Imani N. S. Munyaka (University of California, San Diego), Daniel A Delgado, Juan Gilbert, Jaime Ruiz, Patrick Traynor (University of Florida)

Telephone carriers and third-party developers have created technical solutions to detect and notify consumers of spam calls. The goal of this technology is to help users make decisions about incoming calls and reduce the negative effects of spam calls on finances and daily life. Although useful, this technology has varying accuracy due to technical limitations. In this study, we conduct design interviews, a call response diary study, and an MTurk survey (N=143) to explore the relationship between warning accuracy and callee decision-making for incoming calls. Our results suggest that previous call experience can lead to incomplete mental models of how Caller ID works. Additionally, we find that false alarms and missed detection do not impact call response but can influence user expectations of the call. Since adversaries can use mismatched expectations to their advantage, we recommend using warning design characteristics that align with user expectations under detection accuracy constraints.

View More Papers

WIP: Towards a Certifiably Robust Defense for Multi-label Classifiers...

Dennis Jacob, Chong Xiang, Prateek Mittal (Princeton University)

Read More

Flow Correlation Attacks on Tor Onion Service Sessions with...

Daniela Lopes (INESC-ID / IST, Universidade de Lisboa), Jin-Dong Dong (Carnegie Mellon University), Pedro Medeiros (INESC-ID / IST, Universidade de Lisboa), Daniel Castro (INESC-ID / IST, Universidade de Lisboa), Diogo Barradas (University of Waterloo), Bernardo Portela (INESC TEC / Universidade do Porto), João Vinagre (INESC TEC / Universidade do Porto), Bernardo Ferreira (LASIGE, Faculdade de…

Read More

Unus pro omnibus: Multi-Client Searchable Encryption via Access Control

Jiafan Wang (Data61, CSIRO), Sherman S. M. Chow (The Chinese University of Hong Kong)

Read More