Xinyao Ma, Ambarish Aniruddha Gurjar, Anesu Christopher Chaora, Tatiana R Ringenberg, L. Jean Camp (Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington)

This study delves into the crucial role of developers in identifying privacy sensitive information in code. The context informs the research of diverse global data protection regulations, such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA). It specifically investigates programmers’ ability to discern the sensitivity level of data processing in code, a task of growing importance given the increasing legislative demands for data privacy.

We conducted an online card-sorting experiment to explore how the participating programmers across a range of expertise perceive the sensitivity of variable names in code snippets. Our study evaluates the accuracy, feasibility, and reliability of our participating programmers in determining what constitutes a ’sensitive’ variable. We further evaluate if there is a consensus among programmers, how their level of security knowledge influences any consensus, and whether any consensus or impact of expertise is consistent across different categories of variables. Our findings reveal a lack of consistency among participants regarding the sensitivity of processing different types of data, as indicated by snippets of code with distinct variable names. There remains a significant divergence in opinions, particularly among those with more technical expertise. As technical expertise increases, consensus decreases across the various categories of sensitive data. This study not only sheds light on the current state of programmers’ privacy awareness but also motivates the need for developing better industry practices and tools for automatically identifying sensitive data in code.

View More Papers

Explainable AI in Cybersecurity Operations: Lessons Learned from xAI...

Megan Nyre-Yu (Sandia National Laboratories), Elizabeth S. Morris (Sandia National Laboratories), Blake Moss (Sandia National Laboratories), Charles Smutz (Sandia National Laboratories), Michael R. Smith (Sandia National Laboratories)

Read More

Proof of Backhaul: Trustfree Measurement of Broadband Bandwidth

Peiyao Sheng (Kaleidoscope Blockchain Inc.), Nikita Yadav (Indian Institute of Science), Vishal Sevani (Kaleidoscope Blockchain Inc.), Arun Babu (Kaleidoscope Blockchain Inc.), Anand Svr (Kaleidoscope Blockchain Inc.), Himanshu Tyagi (Indian Institute of Science), Pramod Viswanath (Kaleidoscope Blockchain Inc.)

Read More

Towards Integrating Human-Centered Cybersecurity Research Into Practice: A Practitioner...

Julie Haney, Clyburn Cunningham, Susanne Furman (National Institute of Standards and Technology)

Read More

MirageFlow: A New Bandwidth Inflation Attack on Tor

Christoph Sendner (University of Würzburg), Jasper Stang (University of Würzburg), Alexandra Dmitrienko (University of Würzburg), Raveen Wijewickrama (University of Texas at San Antonio), Murtuza Jadliwala (University of Texas at San Antonio)

Read More