Hao-Ping (Hank) Lee (Carnegie Mellon University), Wei-Lun Kao (National Taiwan University), Hung-Jui Wang (National Taiwan University), Ruei-Che Chang (University of Michigan), Yi-Hao Peng (Carnegie Mellon University), Fu-Yin Cherng (National Chung Cheng University), Shang-Tse Chen (National Taiwan University)

Audio CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) is an accessible alternative to the traditional CAPTCHA for people with visual impairments. However, the literature has found that audio CAPTCHA suffers from both lower usability and security than its visual counterpart. In this paper, we propose AdvCAPTCHA, a novel audio CAPTCHA generated by using adversarial machine learning techniques. By conducting studies with people with and without visual impairments, we show that AdvCAPTCHA can outperform the status quo audio CAPTCHA in security but not usability. We demonstrate AdvCAPTCHA’s feasibility of providing detection of malicious attacks. We also present an evaluation metric, thresholding, to quantify the trade-off between usability and security for audio CAPTCHA design. Finally, we discuss approaches to the real-world adoption of AdvCAPTCHA.

View More Papers

Analyzing and Creating Malicious URLs: A Comparative Study on...

Vincent Drury (IT-Security Research Group, RWTH Aachen University), Rene Roepke (Learning Technologies Research Group, RWTH Aachen University), Ulrik Schroeder (Learning Technologies Research Group, RWTH Aachen University), Ulrike Meyer (IT-Security Research Group, RWTH Aachen University)

Read More

A Comparison of Three Approaches to Assist Users in...

Michael Clark (Brigham Young University), Scott Ruoti (The University of Tennessee), Michael Mendoza (Imperial College London), Kent Seamons (Brigham Young University)

Read More

SoK: A Proposal for Incorporating Gamified Cybersecurity Awareness in...

June De La Cruz (INSPIRIT Lab, University of Denver), Sanchari Das (INSPIRIT Lab, University of Denver)

Read More

Unus pro omnibus: Multi-Client Searchable Encryption via Access Control

Jiafan Wang (Data61, CSIRO), Sherman S. M. Chow (The Chinese University of Hong Kong)

Read More