Elina van Kempen, Zane Karl, Richard Deamicis, Qi Alfred Chen (UC Irivine)

Biometric authentication systems, such as fingerprint scanning or facial recognition, are now commonplace and available on the majority of new smartphones and laptops. With the development of tablet-digital pen systems, the deployment of handwriting authentication is to be considered.

In this paper, we evaluate the viability of using the dynamic properties of handwriting, provided by the Apple Pencil, to distinguish and authenticate individuals. Following the data collection phase involving 30 participants, we examined the accuracy of time-series classification models on different inputs and on textindependent against text-dependent authentication, and we analyzed the effect of handwriting forgery. Additionally, participants completed a user survey to gather insight on the public reception of handwriting authentication. While classification models proved to have high accuracy, above 99% in many cases, and participants had a globally positive view of handwriting authentication, the models were not always robust against forgeries, with up to 21.3% forgery success rate. Overall, participants were positive about using handwriting authentication but showed some concern regarding its privacy and security impacts.

View More Papers

BGP-iSec: Improved Security of Internet Routing Against Post-ROV Attacks

Cameron Morris (University of Connecticut), Amir Herzberg (University of Connecticut), Bing Wang (University of Connecticut), Samuel Secondo (University of Connecticut)

Read More

Certificate Transparency Revisited: The Public Inspections on Third-party Monitors

Aozhuo Sun (Institute of Information Engineering, Chinese Academy of Sciences), Jingqiang Lin (School of Cyber Science and Technology, University of Science and Technology of China), Wei Wang (Institute of Information Engineering, Chinese Academy of Sciences), Zeyan Liu (The University of Kansas), Bingyu Li (School of Cyber Science and Technology, Beihang University), Shushang Wen (School of…

Read More

Security-Performance Tradeoff in DAG-based Proof-of-Work Blockchain Protocols

Shichen Wu (1. School of Cyber Science and Technology, Shandong University 2. Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education), Puwen Wei (1. School of Cyber Science and Technology, Shandong University 2. Quancheng Laboratory 3. Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education), Ren Zhang (Cryptape Co. Ltd. and…

Read More

DRAINCLoG: Detecting Rogue Accounts with Illegally-obtained NFTs using Classifiers...

Hanna Kim (KAIST), Jian Cui (Indiana University Bloomington), Eugene Jang (S2W Inc.), Chanhee Lee (S2W Inc.), Yongjae Lee (S2W Inc.), Jin-Woo Chung (S2W Inc.), Seungwon Shin (KAIST)

Read More