Cherin Lim, Tianhao Xu, Prashanth Rajivan (University of Washington)

Human trust is critical for the adoption and continued use of autonomous vehicles (AVs). Experiencing vehicle failures that stem from security threats to underlying technologies that enable autonomous driving, can significantly degrade drivers’ trust in AVs. It is crucial to understand and measure how security threats to AVs impact human trust. To this end, we conducted a driving simulator study with forty participants who underwent three drives including one that had simulated cybersecurity attacks. We hypothesize drivers’ trust in the vehicle is reflected through drivers’ body posture, foot movement, and engagement with vehicle controls during the drive. To test this hypothesis, we extracted body posture features from each frame in the video recordings, computed skeletal angles, and performed k-means clustering on these values to classify drivers’ foot positions. In this paper, we present an algorithmic pipeline for automatic analysis of body posture and objective measurement of trust that could be used for building AVs capable of trust calibration after security attack events.

View More Papers

Heterogeneous Graph Pre-training Based Model for Secure and Efficient...

Xurui Li (Fudan University), Xin Shan (Bank of Shanghai), Wenhao Yin (Shanghai Saic Finance Co., Ltd)

Read More

DeGPT: Optimizing Decompiler Output with LLM

Peiwei Hu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Ruigang Liang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Kai Chen (Institute of Information Engineering, Chinese Academy of Sciences, China)

Read More

WIP: Infrared Laser Reflection Attack Against Traffic Sign Recognition...

Takami Sato (University of California, Irvine), Sri Hrushikesh Varma Bhupathiraju (University of Florida), Michael Clifford (Toyota InfoTech Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

Pisces: Private and Compliable Cryptocurrency Exchange

Ya-Nan Li (The University of Sydney), Tian Qiu (The University of Sydney), Qiang Tang (The University of Sydney)

Read More