Mohammed Aldeen, Pedram MohajerAnsari, Jin Ma, Mashrur Chowdhury, Long Cheng, Mert D. Pesé (Clemson University)

As the advent of autonomous vehicle (AV) technology revolutionizes transportation, it simultaneously introduces new vulnerabilities to cyber-attacks, posing significant challenges to vehicle safety and security. The complexity of these systems, coupled with their increasing reliance on advanced computer vision and machine learning algorithms, makes them susceptible to sophisticated AV attacks. This paper* explores the potential of Large Multimodal Models (LMMs) in identifying Natural Denoising Diffusion (NDD) attacks on traffic signs. Our comparative analysis show the superior performance of LMMs in detecting NDD samples with an average accuracy of 82.52% across the selected models compared to 37.75% for state-of-the-art deep learning models. We further discuss the integration of LMMs within the resource-constrained computational environments to mimic typical autonomous vehicles and assess their practicality through latency benchmarks. Results show substantial superiority of GPT models in achieving lower latency, down to 4.5 seconds per image for both computation time and network latency (RTT), suggesting a viable path towards real-world deployability. Lastly, we extend our analysis to LMMs’ applicability against a wider spectrum of AV attacks, particularly focusing on the Automated Lane Centering systems, emphasizing the potential of LMMs to enhance vehicular cybersecurity.

View More Papers

50 Shades of Support: A Device-Centric Analysis of Android...

Abbas Acar (Florida International University), Güliz Seray Tuncay (Google), Esteban Luques (Florida International University), Harun Oz (Florida International University), Ahmet Aris (Florida International University), Selcuk Uluagac (Florida International University)

Read More

Flow Correlation Attacks on Tor Onion Service Sessions with...

Daniela Lopes (INESC-ID / IST, Universidade de Lisboa), Jin-Dong Dong (Carnegie Mellon University), Pedro Medeiros (INESC-ID / IST, Universidade de Lisboa), Daniel Castro (INESC-ID / IST, Universidade de Lisboa), Diogo Barradas (University of Waterloo), Bernardo Portela (INESC TEC / Universidade do Porto), João Vinagre (INESC TEC / Universidade do Porto), Bernardo Ferreira (LASIGE, Faculdade de…

Read More

CrowdGuard: Federated Backdoor Detection in Federated Learning

Phillip Rieger (Technical University of Darmstadt), Torsten Krauß (University of Würzburg), Markus Miettinen (Technical University of Darmstadt), Alexandra Dmitrienko (University of Würzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Decentralized Information-Flow Control for ROS2

Nishit V. Pandya (Indian Institute of Science Bangalore), Himanshu Kumar (Indian Institute of Science Bangalore), Gokulnath M. Pillai (Indian Institute of Science Bangalore), Vinod Ganapathy (Indian Institute of Science Bangalore)

Read More