Jun Ying, Yiheng Feng (Purdue University), Qi Alfred Chen (University of California, Irvine), Z. Morley Mao (University of Michigan and Google)

Connected Vehicle (CV) and Connected and Autonomous Vehicle (CAV) technologies can greatly improve traffic efficiency and safety. Data spoofing attack is one major threat to CVs and CAVs, since abnormal data (e.g., falsified trajectories) may influence vehicle navigation and deteriorate CAV/CV-based applications. In this work, we aim to design a generic anomaly detection model which can be used to identify abnormal trajectories from both known and unknown data spoofing attacks. First, the attack behaviors of two representative known attacks are modeled. Then, Using driving features derived from transportation and vehicle domain knowledge, an anomaly detection framework is proposed. The framework combines a feature extractor and an anomaly classifier trained with known attack trajectories and can be applied to identify falsified trajectories generated by various attacks. In the numerical experiment, a highway segment with a signalized intersection is built in the V2X Application Spoofing Platform (VASP). To evaluate the generality of the proposed anomaly detection algorithm, we further tested the proposed model with several unknown attacks provided in VASP. The results indicate that the proposed model achieves high accuracy in detecting falsified attack trajectories from both known and unknown attacks.

View More Papers

TinyML meets IoBT against Sensor Hacking

Raushan Kumar Singh (IIT Ropar), Sudeepta Mishra (IIT Ropar)

Read More

Phoenix: Surviving Unpatched Vulnerabilities via Accurate and Efficient Filtering...

Hugo Kermabon-Bobinnec (Concordia University), Yosr Jarraya (Ericsson Security Research), Lingyu Wang (Concordia University), Suryadipta Majumdar (Concordia University), Makan Pourzandi (Ericsson Security Research)

Read More

WIP: Infrared Laser Reflection Attack Against Traffic Sign Recognition...

Takami Sato (University of California, Irvine), Sri Hrushikesh Varma Bhupathiraju (University of Florida), Michael Clifford (Toyota InfoTech Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

WIP: Augmenting Vehicle Safety With Passive BLE

Noah T. Curran (University of Michigan), Kang G. Shin (University of Michigan), William Hass (Lear Corporation), Lars Wolleschensky (Lear Corporation), Rekha Singoria (Lear Corporation), Isaac Snellgrove (Lear Corporation), Ran Tao (Lear Corporation)

Read More