Lewis William Koplon, Ameer Ghasem Nessaee, Alex Choi (University of Arizona, Tucson), Andres Mentoza (New Mexico State University, Las Cruces), Michael Villasana, Loukas Lazos, Ming Li (University of Arizona, Tucson)

We address the problem of cyber-physical access control for connected autonomous vehicles. The goal is to bind a vehicle’s digital identity to its physical identity represented by its physical properties such as its trajectory. We highlight that simply complementing digital authentication with sensing information remains insecure. A remote adversary with valid or compromised cryptographic credentials can hijack the physical identities of nearby vehicles detected by sensors. We propose a cyber-physical challenge-response protocol named Cyclops that relies on lowcost monocular cameras to perform cyber and physical identity binding. In Cyclops, a verifier vehicle challenges a prover vehicle to prove its claimed physical trajectory. The prover constructs a response by capturing a series of scenes in the common Field of View (cFoV) between the prover and the verifier. Verification is achieved by matching the dynamic targets in the cFoV (other vehicles crossing the cFoV). The security of Cyclops relies on the spatiotemporal traffic randomness that cannot be predicted by a remote adversary. We validate the security of Cyclops via simulations on the CARLA simulator and on-road real-world experiments in an urban setting.

View More Papers

Efficient Privacy-Preserved Processing of Multimodal Data for Vehicular Traffic...

Meisam Mohammady (Iowa State University), Reza Arablouei (Data61, CSIRO)

Read More

Commercial Vehicle Electronic Logging Device Security: Unmasking the Risk...

Jake Jepson, Rik Chatterjee, Jeremy Daily (Colorado State University)

Read More

Understanding Route Origin Validation (ROV) Deployment in the Real...

Lancheng Qin (Tsinghua University, BNRist), Li Chen (Zhongguancun Laboratory), Dan Li (Tsinghua University, Zhongguancun Laboratory), Honglin Ye (Tsinghua University), Yutian Wang (Tsinghua University)

Read More

Vision: Towards Fully Shoulder-Surfing Resistant and Usable Authentication for...

Tobias Länge (Karlsruhe Institute of Technology), Philipp Matheis (Karlsruhe Institute of Technology), Reyhan Düzgün (Ruhr University Bochum), Melanie Volkamer (Karlsruhe Institute of Technology), Peter Mayer (Karlsruhe Institute of Technology, University of Southern Denmark)

Read More