Wentao Chen, Sam Der, Yunpeng Luo, Fayzah Alshammari, Qi Alfred Chen (University of California, Irvine)

Due to the cyber-physical nature of robotic vehicles, security is especially crucial, as a compromised system not only exposes privacy and information leakage risks, but also increases the risk of harm in the physical world. As such, in this paper, we explore the current vulnerability landscape of robotic vehicles exposed to and thus remotely accessible by any party on the public Internet. Focusing particularly on instances of the Robot Operating System (ROS), a commonly used open-source robotic software framework, we performed new Internet-wide scans of the entire IPv4 address space, identifying, categorizing, and analyzing the ROS-based systems we discovered. We further performed the first measurement of ROS scanners in the wild by setting up ROS honeypots, logging traffic, and analyzing the traffic we received. We found over 190 ROS systems on average being regularly exposed to the public Internet and discovered new trends in the exposure of different types of robotic vehicles, suggesting increasing concern regarding the cybersecurity of today’s ROS-based robotic vehicle systems.

View More Papers

LMSanitator: Defending Prompt-Tuning Against Task-Agnostic Backdoors

Chengkun Wei (Zhejiang University), Wenlong Meng (Zhejiang University), Zhikun Zhang (CISPA Helmholtz Center for Information Security and Stanford University), Min Chen (CISPA Helmholtz Center for Information Security), Minghu Zhao (Zhejiang University), Wenjing Fang (Ant Group), Lei Wang (Ant Group), Zihui Zhang (Zhejiang University), Wenzhi Chen (Zhejiang University)

Read More

Space-Domain AI Applications need Rigorous Security Risk Analysis

Alexandra Weber (Telespazio Germany GmbH), Peter Franke (Telespazio Germany GmbH)

Read More

Parrot-Trained Adversarial Examples: Pushing the Practicality of Black-Box Audio...

Rui Duan (University of South Florida), Zhe Qu (Central South University), Leah Ding (American University), Yao Liu (University of South Florida), Zhuo Lu (University of South Florida)

Read More

MOCK: Optimizing Kernel Fuzzing Mutation with Context-aware Dependency

Jiacheng Xu (Zhejiang University), Xuhong Zhang (Zhejiang University), Shouling Ji (Zhejiang University), Yuan Tian (UCLA), Binbin Zhao (Georgia Institute of Technology), Qinying Wang (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University)

Read More