Wentao Chen, Sam Der, Yunpeng Luo, Fayzah Alshammari, Qi Alfred Chen (University of California, Irvine)

Due to the cyber-physical nature of robotic vehicles, security is especially crucial, as a compromised system not only exposes privacy and information leakage risks, but also increases the risk of harm in the physical world. As such, in this paper, we explore the current vulnerability landscape of robotic vehicles exposed to and thus remotely accessible by any party on the public Internet. Focusing particularly on instances of the Robot Operating System (ROS), a commonly used open-source robotic software framework, we performed new Internet-wide scans of the entire IPv4 address space, identifying, categorizing, and analyzing the ROS-based systems we discovered. We further performed the first measurement of ROS scanners in the wild by setting up ROS honeypots, logging traffic, and analyzing the traffic we received. We found over 190 ROS systems on average being regularly exposed to the public Internet and discovered new trends in the exposure of different types of robotic vehicles, suggesting increasing concern regarding the cybersecurity of today’s ROS-based robotic vehicle systems.

View More Papers

Large Language Model guided Protocol Fuzzing

Ruijie Meng (National University of Singapore, Singapore), Martin Mirchev (National University of Singapore), Marcel Böhme (MPI-SP, Germany and Monash University, Australia), Abhik Roychoudhury (National University of Singapore)

Read More

Sneaky Spikes: Uncovering Stealthy Backdoor Attacks in Spiking Neural...

Gorka Abad (Radboud University & Ikerlan Technology Research Centre), Oguzhan Ersoy (Radboud University), Stjepan Picek (Radboud University & Delft University of Technology), Aitor Urbieta (Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA))

Read More

Like, Comment, Get Scammed: Characterizing Comment Scams on Media...

Xigao Li (Stony Brook University), Amir Rahmati (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Read More

CrowdGuard: Federated Backdoor Detection in Federated Learning

Phillip Rieger (Technical University of Darmstadt), Torsten Krauß (University of Würzburg), Markus Miettinen (Technical University of Darmstadt), Alexandra Dmitrienko (University of Würzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More