Alessio Buscemi, Thomas Engel (SnT, University of Luxembourg), Kang G. Shin (The University of Michigan)

The Controller Area Network (CAN) is widely deployed as the de facto global standard for the communication between Electronic Control Units (ECUs) in the automotive sector. Despite being unencrypted, the data transmitted over CAN is encoded according to the Original Equipment Manufacturers (OEMs) specifications, and their formats are kept secret from the general public. Thus, the only way to obtain accurate vehicle information from the CAN bus is through reverse engineering. Aftermarket companies and academic researchers have focused on automating the CAN reverse-engineering process to improve its speed and scalability. However, the manufacturers have recently started multiplexing the CAN frames primarily for platform upgrades, rendering state-of-the-art (SOTA) reverse engineering ineffective. To overcome this new barrier, we present CAN Multiplexed Frames Translator (CAN-MXT), the first tool for the identification of new-generation multiplexed CAN frames. We also introduce CAN Multiplexed Frames Generator (CANMXG), a tool for the parsing of standard CAN traffic into multiplexed traffic, facilitating research and app development on CAN multiplexing.

View More Papers

Securing EV charging system against Physical-layer Signal Injection Attack...

Soyeon Son (Korea University) Kyungho Joo (Korea University) Wonsuk Choi (Korea University) Dong Hoon Lee (Korea University)

Read More

Exploiting Diagnostic Protocol Vulnerabilities on Embedded Networks in Commercial...

Carson Green, Rik Chatterjee, Jeremy Daily (Colorado State University)

Read More

A Cross-Verification Approach with Publicly Available Map for Detecting...

Takami Sato, Ningfei Wang (University of California, Irvine), Yueqiang Cheng (NIO Security Research), Qi Alfred Chen (University of California, Irvine)

Read More

WIP: Augmenting Vehicle Safety With Passive BLE

Noah T. Curran (University of Michigan), Kang G. Shin (University of Michigan), William Hass (Lear Corporation), Lars Wolleschensky (Lear Corporation), Rekha Singoria (Lear Corporation), Isaac Snellgrove (Lear Corporation), Ran Tao (Lear Corporation)

Read More