Alessio Buscemi, Thomas Engel (SnT, University of Luxembourg), Kang G. Shin (The University of Michigan)

The Controller Area Network (CAN) is widely deployed as the de facto global standard for the communication between Electronic Control Units (ECUs) in the automotive sector. Despite being unencrypted, the data transmitted over CAN is encoded according to the Original Equipment Manufacturers (OEMs) specifications, and their formats are kept secret from the general public. Thus, the only way to obtain accurate vehicle information from the CAN bus is through reverse engineering. Aftermarket companies and academic researchers have focused on automating the CAN reverse-engineering process to improve its speed and scalability. However, the manufacturers have recently started multiplexing the CAN frames primarily for platform upgrades, rendering state-of-the-art (SOTA) reverse engineering ineffective. To overcome this new barrier, we present CAN Multiplexed Frames Translator (CAN-MXT), the first tool for the identification of new-generation multiplexed CAN frames. We also introduce CAN Multiplexed Frames Generator (CANMXG), a tool for the parsing of standard CAN traffic into multiplexed traffic, facilitating research and app development on CAN multiplexing.

View More Papers

Unus pro omnibus: Multi-Client Searchable Encryption via Access Control

Jiafan Wang (Data61, CSIRO), Sherman S. M. Chow (The Chinese University of Hong Kong)

Read More

Securing the Satellite Software Stack

Samuel Jero (MIT Lincoln Laboratory), Juliana Furgala (MIT Lincoln Laboratory), Max A Heller (MIT Lincoln Laboratory), Benjamin Nahill (MIT Lincoln Laboratory), Samuel Mergendahl (MIT Lincoln Laboratory), Richard Skowyra (MIT Lincoln Laboratory)

Read More

Transpose Attack: Stealing Datasets with Bidirectional Training

Guy Amit (Ben-Gurion University), Moshe Levy (Ben-Gurion University), Yisroel Mirsky (Ben-Gurion University)

Read More

WIP: An Adaptive High Frequency Removal Attack to Bypass...

Yuki Hayakawa (Keio University), Takami Sato (University of California, Irvine), Ryo Suzuki, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More