Ahsan Saleem (University of Jyväskylä, Finland), Andrei Costin (University of Jyväskylä, Finland), Hannu Turtiainen (University of Jyväskylä, Finland), Timo Hämäläinen (University of Jyväskylä, Finland)

COSPAS-SARSAT is a satellite radio location system for aviation, maritime, and land travellers designed to aid search and rescue (SAR) services in distress. This system effectively detects, processes, and relays distress signals, facilitating prompt responses from SAR services. However, COSPAS-SARSAT 406 MHz protocols, both from an architectural and implementation point of view, exhibit fundamental cybersecurity weaknesses that make them an easy target for potential attackers. The two fundamental flaws of these protocols are the lack of digital signatures (i.e., integrity and authenticity) and encryption (i.e., confidentiality and privacy). The risks associated with these and other weaknesses have been repeatedly demonstrated by ethical cybersecurity researchers.

In this paper, we first present an overview of the insecure design of COSPAS-SARSAT messaging protocols. Subsequently, we propose a lightweight ECDSA message integrity and authenticity scheme that works seamlessly for COSPAS-SARSAT 406 MHz protocols. We propose that the scheme can be added as a backward-compatible software-only upgrade to existing systems without requiring expensive architectural redesign, upgrades, and retrofitting. The preliminary implementation, tests, and results from the lab show that our scheme is effective and efficient in adding message authenticity and integrity and represents a promising applied research direction for a low-cost, potentially backward-compatible upgrade for already deployed and operational systems.

View More Papers

Powers of Tau in Asynchrony

Sourav Das (University of Illinois at Urbana-Champaign), Zhuolun Xiang (Aptos), Ling Ren (University of Illinois at Urbana-Champaign)

Read More

AAKA: An Anti-Tracking Cellular Authentication Scheme Leveraging Anonymous Credentials

Hexuan Yu (Virginia Polytechnic Institute and State University), Changlai Du (Virginia Polytechnic Institute and State University), Yang Xiao (University of Kentucky), Angelos Keromytis (Georgia Institute of Technology), Chonggang Wang (InterDigital), Robert Gazda (InterDigital), Y. Thomas Hou (Virginia Polytechnic Institute and State University), Wenjing Lou (Virginia Polytechnic Institute and State University)

Read More

Space-Domain AI Applications need Rigorous Security Risk Analysis

Alexandra Weber (Telespazio Germany GmbH), Peter Franke (Telespazio Germany GmbH)

Read More

Acoustic Keystroke Leakage on Smart Televisions

Tejas Kannan (University of Chicago), Synthia Qia Wang (University of Chicago), Max Sunog (University of Chicago), Abraham Bueno de Mesquita (University of Chicago Laboratory Schools), Nick Feamster (University of Chicago), Henry Hoffmann (University of Chicago)

Read More