Ahsan Saleem (University of Jyväskylä, Finland), Andrei Costin (University of Jyväskylä, Finland), Hannu Turtiainen (University of Jyväskylä, Finland), Timo Hämäläinen (University of Jyväskylä, Finland)

COSPAS-SARSAT is a satellite radio location system for aviation, maritime, and land travellers designed to aid search and rescue (SAR) services in distress. This system effectively detects, processes, and relays distress signals, facilitating prompt responses from SAR services. However, COSPAS-SARSAT 406 MHz protocols, both from an architectural and implementation point of view, exhibit fundamental cybersecurity weaknesses that make them an easy target for potential attackers. The two fundamental flaws of these protocols are the lack of digital signatures (i.e., integrity and authenticity) and encryption (i.e., confidentiality and privacy). The risks associated with these and other weaknesses have been repeatedly demonstrated by ethical cybersecurity researchers.

In this paper, we first present an overview of the insecure design of COSPAS-SARSAT messaging protocols. Subsequently, we propose a lightweight ECDSA message integrity and authenticity scheme that works seamlessly for COSPAS-SARSAT 406 MHz protocols. We propose that the scheme can be added as a backward-compatible software-only upgrade to existing systems without requiring expensive architectural redesign, upgrades, and retrofitting. The preliminary implementation, tests, and results from the lab show that our scheme is effective and efficient in adding message authenticity and integrity and represents a promising applied research direction for a low-cost, potentially backward-compatible upgrade for already deployed and operational systems.

View More Papers

PrintListener: Uncovering the Vulnerability of Fingerprint Authentication via the...

Man Zhou (Huazhong University of Science and Technology), Shuao Su (Huazhong University of Science and Technology), Qian Wang (Wuhan University), Qi Li (Tsinghua University), Yuting Zhou (Huazhong University of Science and Technology), Xiaojing Ma (Huazhong University of Science and Technology), Zhengxiong Li (University of Colorado Denver)

Read More

Symphony: Path Validation at Scale

Anxiao He (Zhejiang University), Jiandong Fu (Zhejiang University), Kai Bu (Zhejiang University), Ruiqi Zhou (Zhejiang University), Chenlu Miao (Zhejiang University), Kui Ren (Zhejiang University)

Read More

CAN-MIRGU: A Comprehensive CAN Bus Attack Dataset from Moving...

Sampath Rajapaksha, Harsha Kalutarage (Robert Gordon University, UK), Garikayi Madzudzo (Horiba Mira Ltd, UK), Andrei Petrovski (Robert Gordon University, UK), M.Omar Al-Kadri (University of Doha for Science and Technology)

Read More

TinyML meets IoBT against Sensor Hacking

Raushan Kumar Singh (IIT Ropar), Sudeepta Mishra (IIT Ropar)

Read More