Tobias Lüscher (ETH Zurich), Martin Strohmeier (Cyber-Defence Campus, armasuisse S+T), Vincent Lenders (Cyber-Defence Campus, armasuisse S+T)

Automatic Dependent Surveillance - Contract (ADS-C) is an satellite-based aviation datalink application used to monitor aircraft in remote regions. It is a crucial method for air traffic control to track aircraft where other protocols such as ADS-B lack connectivity. Even though it has been conceived more than 30 years ago, and other legacy communication protocols in aviation have shown to be vulnerable, ADS-C’s security has not been investigated so far in the literature. We conduct a first investigation to close this gap. First, we compile a comprehensive overview of the history, impact, and technical details of ADSC and its lower layers. Second, we build two software-defined radio receivers in order to analyze over 120’000 real-world ADSC messages. We further illustrate ADS-C’s lack of authentication by implementing an ADS-C transmitter, which is capable of generating and sending arbitrary ADS-C messages. Finally, we use the channel control offered through a software-defined ADSC receiver and transmitter as a basis for an in-depth analysis of the protocol weaknesses of the ADS-C system. The found vulnerabilities range from passively tracking aircraft to actively altering the position of actual aircraft through attacks on the downlink and the uplink. We assess the difficulty and impact of these attacks and discuss potential countermeasures.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 104 [1] => 71 ) ) ) [post__not_in] => Array ( [0] => 17351 ) )

TinyML meets IoBT against Sensor Hacking

Raushan Kumar Singh (IIT Ropar), Sudeepta Mishra (IIT Ropar)

Read More

Like, Comment, Get Scammed: Characterizing Comment Scams on Media...

Xigao Li (Stony Brook University), Amir Rahmati (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Read More

Efficient and Timely Revocation of V2X Credentials

Gianluca Scopelliti (Ericsson & KU Leuven), Christoph Baumann (Ericsson), Fritz Alder (KU Leuven), Eddy Truyen (KU Leuven), Jan Tobias Mühlberg (Université libre de Bruxelles & KU Leuven)

Read More

AutoWatch: Learning Driver Behavior with Graphs for Auto Theft...

Paul Agbaje, Abraham Mookhoek, Afia Anjum, Arkajyoti Mitra (University of Texas at Arlington), Mert D. Pesé (Clemson University), Habeeb Olufowobi (University of Texas at Arlington)

Read More