Tobias Lüscher (ETH Zurich), Martin Strohmeier (Cyber-Defence Campus, armasuisse S+T), Vincent Lenders (Cyber-Defence Campus, armasuisse S+T)

Automatic Dependent Surveillance - Contract (ADS-C) is an satellite-based aviation datalink application used to monitor aircraft in remote regions. It is a crucial method for air traffic control to track aircraft where other protocols such as ADS-B lack connectivity. Even though it has been conceived more than 30 years ago, and other legacy communication protocols in aviation have shown to be vulnerable, ADS-C’s security has not been investigated so far in the literature. We conduct a first investigation to close this gap. First, we compile a comprehensive overview of the history, impact, and technical details of ADSC and its lower layers. Second, we build two software-defined radio receivers in order to analyze over 120’000 real-world ADSC messages. We further illustrate ADS-C’s lack of authentication by implementing an ADS-C transmitter, which is capable of generating and sending arbitrary ADS-C messages. Finally, we use the channel control offered through a software-defined ADSC receiver and transmitter as a basis for an in-depth analysis of the protocol weaknesses of the ADS-C system. The found vulnerabilities range from passively tracking aircraft to actively altering the position of actual aircraft through attacks on the downlink and the uplink. We assess the difficulty and impact of these attacks and discuss potential countermeasures.

View More Papers

Timing Channels in Adaptive Neural Networks

Ayomide Akinsanya (Stevens Institute of Technology), Tegan Brennan (Stevens Institute of Technology)

Read More

ReqsMiner: Automated Discovery of CDN Forwarding Request Inconsistencies and...

Linkai Zheng (Tsinghua University), Xiang Li (Tsinghua University), Chuhan Wang (Tsinghua University), Run Guo (Tsinghua University), Haixin Duan (Tsinghua University; Quancheng Laboratory), Jianjun Chen (Tsinghua University; Zhongguancun Laboratory), Chao Zhang (Tsinghua University; Zhongguancun Laboratory), Kaiwen Shen (Tsinghua University)

Read More

DRAINCLoG: Detecting Rogue Accounts with Illegally-obtained NFTs using Classifiers...

Hanna Kim (KAIST), Jian Cui (Indiana University Bloomington), Eugene Jang (S2W Inc.), Chanhee Lee (S2W Inc.), Yongjae Lee (S2W Inc.), Jin-Woo Chung (S2W Inc.), Seungwon Shin (KAIST)

Read More

OrbID: Identifying Orbcomm Satellite RF Fingerprints

Cédric Solenthaler (ETH Zurich), Joshua Smailes (University of Oxford), Martin Strohmeier (armasuisse Science & Technology)

Read More