Joshua Smailes (University of Oxford), Edd Salkield (University of Oxford), Sebastian Köhler (University of Oxford), Simon Birnbach (University of Oxford), Martin Strohmeier (Cyber-Defence Campus, armasuisse S+T), Ivan Martinovic (University of Oxford)

In the wake of increasing numbers of attacks on radio communication systems, a range of techniques are being deployed to increase the security of these systems. One such technique is radio fingerprinting, in which the transmitter can be identified and authenticated by observing small hardware differences expressed in the signal. Fingerprinting has been explored in particular in the defense of satellite systems, many of which are insecure and cannot be retrofitted with cryptographic security.

In this paper, we evaluate the effectiveness of radio fingerprinting techniques under interference and jamming attacks, usually intended to deny service. By taking a pre-trained fingerprinting model and gathering a new dataset in which different levels of Gaussian noise and tone jamming have been added to the legitimate signal, we assess the attacker power required in order to disrupt the transmitter fingerprint such that it can no longer be recognized. We compare this to Gaussian jamming on the data portion of the signal, obtaining the remarkable result that transmitter fingerprints are still recognizable even in the presence of moderate levels of noise. Through deeper analysis of the results, we conclude that it takes a similar amount of jamming power in order to disrupt the fingerprint as it does to jam the message contents itself, so it is safe to include a fingerprinting system to authenticate satellite communication without opening up the system to easier denial-of-service attacks.

View More Papers

You Can Use But Cannot Recognize: Preserving Visual Privacy...

Qiushi Li (Tsinghua University), Yan Zhang (Tsinghua University), Ju Ren (Tsinghua University), Qi Li (Tsinghua University), Yaoxue Zhang (Tsinghua University)

Read More

Flow Correlation Attacks on Tor Onion Service Sessions with...

Daniela Lopes (INESC-ID / IST, Universidade de Lisboa), Jin-Dong Dong (Carnegie Mellon University), Pedro Medeiros (INESC-ID / IST, Universidade de Lisboa), Daniel Castro (INESC-ID / IST, Universidade de Lisboa), Diogo Barradas (University of Waterloo), Bernardo Portela (INESC TEC / Universidade do Porto), João Vinagre (INESC TEC / Universidade do Porto), Bernardo Ferreira (LASIGE, Faculdade de…

Read More

On the Vulnerability of Traffic Light Recognition Systems to...

Sri Hrushikesh Varma Bhupathiraju (University of Florida), Takami Sato (University of California, Irvine), Michael Clifford (Toyota Info Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

BreakSPF: How Shared Infrastructures Magnify SPF Vulnerabilities Across the...

Chuhan Wang (Tsinghua University), Yasuhiro Kuranaga (Tsinghua University), Yihang Wang (Tsinghua University), Mingming Zhang (Zhongguancun Laboratory), Linkai Zheng (Tsinghua University), Xiang Li (Tsinghua University), Jianjun Chen (Tsinghua University; Zhongguancun Laboratory), Haixin Duan (Tsinghua University; Quan Cheng Lab; Zhongguancun Laboratory), Yanzhong Lin (Coremail Technology Co. Ltd), Qingfeng Pan (Coremail Technology Co. Ltd)

Read More