Qiushi Li (Tsinghua University), Yan Zhang (Tsinghua University), Ju Ren (Tsinghua University), Qi Li (Tsinghua University), Yaoxue Zhang (Tsinghua University)

Image data have been extensively used in Deep Neural Network (DNN) tasks in various scenarios, e.g., autonomous driving and medical image analysis, which incurs significant privacy concerns. Existing privacy protection techniques are unable to efficiently protect such data. For example, Differential Privacy (DP) that is an emerging technique protects data with strong privacy guarantee cannot effectively protect visual features of exposed image dataset. In this paper, we propose a novel privacy-preserving framework VisualMixer that protects the training data of visual DNN tasks by pixel shuffling, while not injecting any noises. VisualMixer utilizes a new privacy metric called Visual Feature Entropy (VFE) to effectively quantify the visual features of an image from both biological and machine vision aspects. In VisualMixer, we devise a task-agnostic image obfuscation method to protect the visual privacy of data for DNN training and inference. For each image, it determines regions for pixel shuffling in the image and the sizes of these regions according to the desired VFE. It shuffles pixels both in the spatial domain and in the chromatic channel space in the regions without injecting noises so that it can prevent visual features from being discerned and recognized, while incurring negligible accuracy loss. Extensive experiments on real-world datasets demonstrate that VisualMixer can effectively preserve the visual privacy with negligible accuracy loss, i.e., at average 2.35 percentage points of model accuracy loss, and almost no performance degradation on model training.

View More Papers

DeepGo: Predictive Directed Greybox Fuzzing

Peihong Lin (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Wei Xie (National University of Defense Technology), Gen Zhang (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Read More

Flow Correlation Attacks on Tor Onion Service Sessions with...

Daniela Lopes (INESC-ID / IST, Universidade de Lisboa), Jin-Dong Dong (Carnegie Mellon University), Pedro Medeiros (INESC-ID / IST, Universidade de Lisboa), Daniel Castro (INESC-ID / IST, Universidade de Lisboa), Diogo Barradas (University of Waterloo), Bernardo Portela (INESC TEC / Universidade do Porto), João Vinagre (INESC TEC / Universidade do Porto), Bernardo Ferreira (LASIGE, Faculdade de…

Read More

Understanding Route Origin Validation (ROV) Deployment in the Real...

Lancheng Qin (Tsinghua University, BNRist), Li Chen (Zhongguancun Laboratory), Dan Li (Tsinghua University, Zhongguancun Laboratory), Honglin Ye (Tsinghua University), Yutian Wang (Tsinghua University)

Read More

Random Spoofing Attack against Scan Matching Algorithm SLAM (Long)

Masashi Fukunaga (MitsubishiElectric), Takeshi Sugawara (The University of Electro-Communications)

Read More