Bo Jiang (TikTok Inc.), Jian Du (TikTok Inc.), Qiang Yan (TikTok Inc.)

Private Set Intersection (PSI) is a widely used protocol that enables two parties to securely compute a function over the intersected part of their shared datasets and has been a significant research focus over the years. However, recent studies have highlighted its vulnerability to Set Membership Inference Attacks (SMIA), where an adversary might deduce an individual's membership by invoking multiple PSI protocols. This presents a considerable risk, even in the most stringent versions of PSI, which only return the cardinality of the intersection. This paper explores the evaluation of anonymity within the PSI context. Initially, we highlight the reasons why existing works fall short in measuring privacy leakage, and subsequently propose two attack strategies that address these deficiencies. Furthermore, we provide theoretical guarantees on the performance of our proposed methods. In addition to these, we illustrate how the integration of auxiliary information, such as the sum of payloads associated with members of the intersection (PSI-SUM), can enhance attack efficiency. We conducted a comprehensive performance evaluation of various attack strategies proposed utilizing two real datasets. Our findings indicate that the methods we propose markedly enhance attack efficiency when contrasted with previous research endeavors. The effective attacking implies that depending solely on existing PSI protocols may not provide an adequate level of privacy assurance. It is recommended to combine privacy-enhancing technologies synergistically to enhance privacy protection even further.

View More Papers

A Comparison of Three Approaches to Assist Users in...

Michael Clark (Brigham Young University), Scott Ruoti (The University of Tennessee), Michael Mendoza (Imperial College London), Kent Seamons (Brigham Young University)

Read More

GhostType: The Limits of Using Contactless Electromagnetic Interference to...

Qinhong Jiang (Zhejiang University), Yanze Ren (Zhejiang University), Yan Long (University of Michigan), Chen Yan (Zhejiang University), Yumai Sun (University of Michigan), Xiaoyu Ji (Zhejiang University), Kevin Fu (Northeastern University), Wenyuan Xu (Zhejiang University)

Read More

Secure Control of Connected and Automated Vehicles Using Trust-Aware...

H M Sabbir Ahmad, Ehsan Sabouni, Akua Dickson (Boston University), Wei Xiao (Massachusetts Institute of Technology), Christos Cassandras, Wenchao Li (Boston University)

Read More

File Hijacking Vulnerability: The Elephant in the Room

Chendong Yu (Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security, University of Chinese Academy of Sciences), Yang Xiao (Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security, University of Chinese Academy of Sciences), Jie Lu (Institute of Computing Technology of the Chinese Academy of Sciences), Yuekang…

Read More