Nicola Ruaro (University of California, Santa Barbara), Fabio Gritti (University of California, Santa Barbara), Robert McLaughlin (University of California, Santa Barbara), Ilya Grishchenko (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara), Giovanni Vigna (University of California, Santa Barbara)

In recent years, the Ethereum blockchain has seen significant growth and adoption. One of the key factors of its success is the possibility to run immutable programs known as smart contracts. Smart contracts allow for the automatic manipulation of digital assets and play a central role in the new decentralized finance (DeFi) ecosystem. With the growth of DeFi, the interactions between smart contracts have become increasingly complex, enabling advanced financial protocols and applications. However, bugs in smart contract interactions are also a common cause of critical vulnerabilities that result in considerable financial losses.

In this paper, we study and detect a type of cross-contract vulnerability known as a storage collision. A smart contract uses storage to persistently store its data on the blockchain. Typically, each contract has its own separate storage. However, it is also possible that two smart contracts share their storage (using a delegate call). Unfortunately, when these two contracts have different understandings of the types/semantics of their shared storage, a storage collision vulnerability can occur. This may lead to unexpected behavior such as denial of service (frozen funds), privilege escalation, and theft of financial assets.

To detect and investigate the impact of storage collision vulnerabilities at scale, we propose CRUSH, a novel analysis system that discovers these flaws and synthesizes proof-of-concept exploits. We leverage CRUSH to perform a large-scale analysis of 14,237,696 smart contracts deployed on the Ethereum blockchain since its genesis. CRUSH identifies 14,891 potentially vulnerable contracts and automatically synthesizes an end-to-end exploit for 956 of them. Our system uncovers more than $6 million of novel, previously unreported potential financial damage caused by storage collision vulnerabilities.

View More Papers

HEIR: A Unified Representation for Cross-Scheme Compilation of Fully...

Song Bian (Beihang University), Zian Zhao (Beihang University), Zhou Zhang (Beihang University), Ran Mao (Beihang University), Kohei Suenaga (Kyoto University), Yier Jin (University of Science and Technology of China), Zhenyu Guan (Beihang University), Jianwei Liu (Beihang University)

Read More

Unus pro omnibus: Multi-Client Searchable Encryption via Access Control

Jiafan Wang (Data61, CSIRO), Sherman S. M. Chow (The Chinese University of Hong Kong)

Read More

Predictive Context-sensitive Fuzzing

Pietro Borrello (Sapienza University of Rome), Andrea Fioraldi (EURECOM), Daniele Cono D'Elia (Sapienza University of Rome), Davide Balzarotti (Eurecom), Leonardo Querzoni (Sapienza University of Rome), Cristiano Giuffrida (Vrije Universiteit Amsterdam)

Read More

The Impact of Workload on Phishing Susceptibility: An Experiment

Sijie Zhuo (University of Auckland), Robert Biddle (University of Auckland and Carleton University, Ottawa), Lucas Betts, Nalin Asanka Gamagedara Arachchilage, Yun Sing Koh, Danielle Lottridge, Giovanni Russello (University of Auckland)

Read More