Sunil Manandhar (IBM T.J. Watson Research Center), Kapil Singh (IBM T.J. Watson Research Center), Adwait Nadkarni (William & Mary)

Privacy regulations are being introduced and amended around the globe to effectively regulate the processing of consumer data. These regulations are often analyzed to fulfill compliance mandates and to aid the design of practical systems that improve consumer privacy. However, at present, this is done manually, making the task error-prone, while also incurring significant time, effort, and cost for companies. This paper describes the design and implementation of ARC, a framework that transforms unstructured and complex regulatory text into a structured representation, the ARC tuple(s), which can be queried to assist in the analysis and understanding of regulations. We demonstrate ARC’s effectiveness in extracting three forms of tuples with a high F-1 score (avg. 82.1% across all three) using four major privacy regulations: CCPA, GDPR, VCDPA, and PIPEDA. We then build ARCBert that identifies semantically similar phrases across regulations, enabling compliance analysts to identify common requirements. We run ARC on 16 additional privacy regulations and identify 1,556 ARC tuples and clusters of semantically similar phrases. Finally, we extend ARC to evaluate the compliance of privacy policies by comparing it against the disclosure requirements in the four regulations. Our empirical evaluation with the privacy policies of S&P 500 companies finds 476 missing disclosures, which when manually validated, result in 71.05% true positives, as well as the discovery of 288 additional missing disclosures from the partial matches identified by ARC.

View More Papers

Understanding the Implementation and Security Implications of Protective DNS...

Mingxuan Liu (Zhongguancun Laboratory; Tsinghua University), Yiming Zhang (Tsinghua University), Xiang Li (Tsinghua University), Chaoyi Lu (Tsinghua University), Baojun Liu (Tsinghua University), Haixin Duan (Tsinghua University; Zhongguancun Laboratory), Xiaofeng Zheng (Institute for Network Sciences and Cyberspace, Tsinghua University; QiAnXin Technology Research Institute & Legendsec Information Technology (Beijing) Inc.)

Read More

Measuring the Prevalence of Password Manager Issues Using In-Situ...

Adryana Hutchinson (The George Washington University), Jinwei Tang (Clark University), Adam Aviv (The George Washington University), Peter Story (Clark University)

Read More

An Experimental Study on Attacking Homogeneous Averaging Processes via...

Olsan Ozbay (Dept. ECE, University of Maryland), Yuntao Liu (ISR, University of Maryland), Ankur Srivastava (Dept. ECE, ISR, University of Maryland)

Read More

MPCDiff: Testing and Repairing MPC-Hardened Deep Learning Models

Qi Pang (Carnegie Mellon University), Yuanyuan Yuan (HKUST), Shuai Wang (HKUST)

Read More