Man Zhou (Huazhong University of Science and Technology), Shuao Su (Huazhong University of Science and Technology), Qian Wang (Wuhan University), Qi Li (Tsinghua University), Yuting Zhou (Huazhong University of Science and Technology), Xiaojing Ma (Huazhong University of Science and Technology), Zhengxiong Li (University of Colorado Denver)

Fingerprint authentication has been extensively employed in contemporary identity verification systems owing to its rapidity and cost-effectiveness. Due to its widespread use, fingerprint leakage may cause sensitive information theft, huge economic and personnel losses, and even a potential compromise of national security. As a fingerprint that can coincidentally match a specific proportion of the overall fingerprint population, MasterPrint rings the alarm bells for the security of fingerprint authentication. In this paper, we propose a new side-channel attack on the minutiae-based Automatic Fingerprint Identification System (AFIS), called PrintListener, which leverages users’ fingertip swiping actions on the screen to extract fingerprint pattern features (the first-level features) and synthesizes a stronger targeted PatternMasterPrint with potential second-level features. The attack scenario of PrintListener is extensive and covert. It only needs to record users’ fingertip friction sound and can be launched by leveraging a large number of social media platforms. Extensive experimental results in real-world scenarios show that Printlistener can significantly improve the attack potency of MasterPrint.

View More Papers

VETEOS: Statically Vetting EOSIO Contracts for the “Groundhog Day”...

Levi Taiji Li (University of Utah), Ningyu He (Peking University), Haoyu Wang (Huazhong University of Science and Technology), Mu Zhang (University of Utah)

Read More

DRAINCLoG: Detecting Rogue Accounts with Illegally-obtained NFTs using Classifiers...

Hanna Kim (KAIST), Jian Cui (Indiana University Bloomington), Eugene Jang (S2W Inc.), Chanhee Lee (S2W Inc.), Yongjae Lee (S2W Inc.), Jin-Woo Chung (S2W Inc.), Seungwon Shin (KAIST)

Read More

A Preliminary Study on Using Large Language Models in...

Kumar Shashwat, Francis Hahn, Xinming Ou, Dmitry Goldgof, Jay Ligatti, Larrence Hall (University of South Florida), S. Raj Rajagoppalan (Resideo), Armin Ziaie Tabari (CipherArmor)

Read More