Peihong Lin (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Wei Xie (National University of Defense Technology), Gen Zhang (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Directed Greybox Fuzzing (DGF) is an effective approach designed to strengthen testing vulnerable code areas via predefined target sites. The state-of-the-art DGF techniques redefine and optimize the fitness metric to reach the target sites precisely and quickly. However, optimizations for fitness metrics are mainly based on heuristic algorithms, which usually rely on historical execution information and lack foresight on paths that have not been exercised yet. Thus, those hard-to-execute paths with complex constraints would hinder DGF from reaching the targets, making DGF less efficient.

In this paper, we propose DeepGo, a predictive directed greybox fuzzer that can combine historical and predicted information to steer DGF to reach the target site via an optimal path. We first propose the path transition model, which models DGF as a process of reaching the target site through specific path transition sequences. The new seed generated by mutation would cause the path transition, and the path corresponding to the high-reward path transition sequence indicates a high likelihood of reaching the target site through it. Then, to predict the path transitions and the corresponding rewards, we use deep neural networks to construct a Virtual Ensemble Environment (VEE), which gradually imitates the path transition model and predicts the rewards of path transitions that have not been taken yet. To determine the optimal path, we develop a Reinforcement Learning for Fuzzing (RLF) model to generate the transition sequences with the highest sequence rewards. The RLF model can combine historical and predicted path transitions to generate the optimal path transition sequences, along with the policy to guide the mutation strategy of fuzzing. Finally, to exercise the high-reward path transition sequence, we propose the concept of an action group, which comprehensively optimizes the critical steps of fuzzing to realize the optimal path to reach the target efficiently. We evaluated DeepGo on 2 benchmarks consisting of 25 programs with a total of 100 target sites. The experimental results show that DeepGo achieves 3.23×, 1.72×, 1.81×, and 4.83× speedup compared to AFLGo, BEACON, WindRanger, and ParmeSan, respectively in reaching target sites, and 2.61×, 3.32×, 2.43× and 2.53× speedup in exposing known vulnerabilities.

View More Papers

Free Proxies Unmasked: A Vulnerability and Longitudinal Analysis of...

Naif Mehanna (Univ. Lille / Inria / CNRS), Walter Rudametkin (IRISA / Univ Rennes), Pierre Laperdrix (CNRS, Univ Lille, Inria Lille), and Antoine Vastel (Datadome)

Read More

MacOS versus Microsoft Windows: A Study on the Cybersecurity...

Cem Topcuoglu (Northeastern University), Andrea Martinez (Florida International University), Abbas Acar (Florida International University), Selcuk Uluagac (Florida International University), Engin Kirda (Northeastern University)

Read More

NODLINK: An Online System for Fine-Grained APT Attack Detection...

Shaofei Li (Key Laboratory of High-Confidence Software Technologies (MOE), School of Computer Science, Peking University), Feng Dong (Huazhong University of Science and Technology), Xusheng Xiao (Arizona State University), Haoyu Wang (Huazhong University of Science and Technology), Fei Shao (Case Western Reserve University), Jiedong Chen (Sangfor Technologies Inc.), Yao Guo (Key Laboratory of High-Confidence Software Technologies…

Read More

Strengthening Privacy in Robust Federated Learning through Secure Aggregation

Tianyue Chu, Devriş İşler (IMDEA Networks Institute & Universidad Carlos III de Madrid), Nikolaos Laoutaris (IMDEA Networks Institute)

Read More