Kosei Akama (Keio University), Yoshimichi Nakatsuka (ETH Zurich), Masaaki Sato (Tokai University), Keisuke Uehara (Keio University)

Preventing abusive activities caused by adversaries accessing online services at a rate exceeding that expected by websites has become an ever-increasing problem. CAPTCHAs and SMS authentication are widely used to provide a solution by implementing rate limiting, although they are becoming less effective, and some are considered privacy-invasive. In light of this, many studies have proposed better rate-limiting systems that protect the privacy of legitimate users while blocking malicious actors. However, they suffer from one or more shortcomings: (1) assume trust in the underlying hardware and (2) are vulnerable to side-channel attacks.
Motivated by the aforementioned issues, this paper proposes Scrappy: SeCure Rate Assuring Protocol with PrivacY. Scrappy allows clients to generate unforgeable yet unlinkable rate-assuring proofs, which provides the server with cryptographic guarantees that the client is not misbehaving. We design Scrappy using a combination of DAA and hardware security devices. Scrappy is implemented over three types of devices, including one that can immediately be deployed in the real world. Our baseline evaluation shows that the end-to-end latency of Scrappy is minimal, taking only 0.32 seconds, and uses only 679 bytes of bandwidth when transferring necessary data. We also conduct an extensive security evaluation, showing that the rate-limiting capability of Scrappy is unaffected even if the hardware security device is compromised.

View More Papers

MadRadar: A Black-Box Physical Layer Attack Framework on mmWave...

David Hunt (Duke University), Kristen Angell (Duke University), Zhenzhou Qi (Duke University), Tingjun Chen (Duke University), Miroslav Pajic (Duke University)

Read More

Aligning Confidential Computing with Cloud-native ML Platforms

Angelo Ruocco, Chris Porter, Claudio Carvalho, Daniele Buono, Derren Dunn, Hubertus Franke, James Bottomley, Marcio Silva, Mengmei Ye, Niteesh Dubey, Tobin Feldman-Fitzthum (IBM Research)

Read More

Pencil: Private and Extensible Collaborative Learning without the Non-Colluding...

Xuanqi Liu (Tsinghua University), Zhuotao Liu (Tsinghua University), Qi Li (Tsinghua University), Ke Xu (Tsinghua University), Mingwei Xu (Tsinghua University)

Read More

Understanding the Internet-Wide Vulnerability Landscape for ROS-based Robotic Vehicles...

Wentao Chen, Sam Der, Yunpeng Luo, Fayzah Alshammari, Qi Alfred Chen (University of California, Irvine)

Read More