Zicong Gao (State Key Laboratory of Mathematical Engineering and Advanced Computing), Chao Zhang (Tsinghua University), Hangtian Liu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Wenhou Sun (Tsinghua University), Zhizhuo Tang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Liehui Jiang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Jianjun Chen (Tsinghua University), Yong Xie (Qinghai University)

IoT devices are often found vulnerable, i.e., untrusted inputs may trigger potential vulnerabilities and flow to sensitive operations in the firmware, which could cause severe damage. As such vulnerabilities are in general taint-style, a promising solution to find them is static taint analysis. However, existing solutions have limited efficiency and effectiveness. In this paper, we propose a new efficient and effective taint analysis solution, namely HermeScan, to discover such vulnerabilities, which utilizes reaching definition analysis (RDA) to conduct taint analysis and gets much fewer false negatives, false positives, and time costs. We have implemented a prototype of HermeScan and conducted a thorough evaluation on two datasets, i.e., one 0-day dataset with 30 latest firmware and one N-day dataset with 98 older firmware, and compared with two state-of-the art (SOTA) solutions, i.e., KARONTE and SaTC. In terms of effectiveness, HermeScan, SaTC, and KARONTE find 163, 32, and 0 vulnerabilities in the 0-day dataset respectively. In terms of accuracy, the true positive rates of HermeScan, SaTC, and KARONTE are 81%, 42%, and 0% in the 0-day dataset. In terms of efficiency, HermeScan is 7.5X and 3.8X faster than SaTC and KARONTE on average in finding 0-day vulnerabilities.

View More Papers

IdleLeak: Exploiting Idle State Side Effects for Information Leakage

Fabian Rauscher (Graz University of Technology), Andreas Kogler (Graz University of Technology), Jonas Juffinger (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

Leaking the Privacy of Groups and More: Understanding Privacy...

Jiangrong Wu (Sun Yat-sen University), Yuhong Nan (Sun Yat-sen University), Luyi Xing (Indiana University Bloomington), Jiatao Cheng (Sun Yat-sen University), Zimin Lin (Alibaba Group), Zibin Zheng (Sun Yat-sen University), Min Yang (Fudan University)

Read More

BreakSPF: How Shared Infrastructures Magnify SPF Vulnerabilities Across the...

Chuhan Wang (Tsinghua University), Yasuhiro Kuranaga (Tsinghua University), Yihang Wang (Tsinghua University), Mingming Zhang (Zhongguancun Laboratory), Linkai Zheng (Tsinghua University), Xiang Li (Tsinghua University), Jianjun Chen (Tsinghua University; Zhongguancun Laboratory), Haixin Duan (Tsinghua University; Quan Cheng Lab; Zhongguancun Laboratory), Yanzhong Lin (Coremail Technology Co. Ltd), Qingfeng Pan (Coremail Technology Co. Ltd)

Read More

dRR: A Decentralized, Scalable, and Auditable Architecture for RPKI...

Yingying Su (Tsinghua university), Dan Li (Tsinghua university), Li Chen (Zhongguancun Laboratory), Qi Li (Tsinghua university), Sitong Ling (Tsinghua University)

Read More