Beomjin Jin (Sungkyunkwan University), Eunsoo Kim (Sungkyunkwan University), Hyunwoo Lee (KENTECH), Elisa Bertino (Purdue University), Doowon Kim (University of Tennessee, Knoxville), Hyoungshick Kim (Sungkyunkwan University)

The sharing of Cyber Threat Intelligence (CTI) across organizations is gaining traction, as it can automate threat analysis and improve security awareness. However, limited empirical studies exist on the prevalent types of cybersecurity threat data and their effectiveness in mitigating cyber attacks. We propose a framework named CTI-Lense to collect and analyze the volume, timeliness, coverage, and quality of Structured Threat Information eXpression (STIX) data, a de facto standard CTI format, from a list of publicly available CTI sources. We collected about 6 million STIX data objects from October 31, 2014 to April 10, 2023 from ten data sources and analyzed their characteristics. Our analysis reveals that STIX data sharing has steadily increased in recent years, but the volume of STIX data shared is still relatively low to cover all cyber threats. Additionally, only a few types of threat data objects have been shared, with malware signatures and URLs accounting for more than 90% of the collected data. While URLs are usually shared promptly, with about 72% of URLs shared earlier than or on the same day as VirusTotal, the sharing of malware signatures is significantly slower. Furthermore, we found that 19% of the Threat actor data contained incorrect information, and only 0.09% of the Indicator data provided security rules to detect cyber attacks. Based on our findings, we recommend practical considerations for effective and scalable STIX data sharing among organizations.

View More Papers

When Cryptography Needs a Hand: Practical Post-Quantum Authentication for...

Geoff Twardokus (Rochester Institute of Technology), Nina Bindel (SandboxAQ), Hanif Rahbari (Rochester Institute of Technology), Sarah McCarthy (University of Waterloo)

Read More

Sneaky Spikes: Uncovering Stealthy Backdoor Attacks in Spiking Neural...

Gorka Abad (Radboud University & Ikerlan Technology Research Centre), Oguzhan Ersoy (Radboud University), Stjepan Picek (Radboud University & Delft University of Technology), Aitor Urbieta (Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA))

Read More

DRAINCLoG: Detecting Rogue Accounts with Illegally-obtained NFTs using Classifiers...

Hanna Kim (KAIST), Jian Cui (Indiana University Bloomington), Eugene Jang (S2W Inc.), Chanhee Lee (S2W Inc.), Yongjae Lee (S2W Inc.), Jin-Woo Chung (S2W Inc.), Seungwon Shin (KAIST)

Read More

EMMasker: EM Obfuscation Against Website Fingerprinting

Mohammed Aldeen, Sisheng Liang, Zhenkai Zhang, Linke Guo (Clemson University), Zheng Song (University of Michigan – Dearborn), and Long Cheng (Clemson University)

Read More