Tejas Kannan (University of Chicago), Synthia Qia Wang (University of Chicago), Max Sunog (University of Chicago), Abraham Bueno de Mesquita (University of Chicago Laboratory Schools), Nick Feamster (University of Chicago), Henry Hoffmann (University of Chicago)

Smart Televisions (TVs) are internet-connected TVs that support video streaming applications and web browsers. Users enter information into Smart TVs through on-screen virtual keyboards. These keyboards require users to navigate between keys with directional commands from a remote controller. Given the extensive functionality of Smart TVs, users type sensitive information (e.g., passwords) into these devices, making keystroke privacy necessary. This work develops and demonstrates a new side-channel attack that exposes keystrokes from the audio of two popular Smart TVs: Apple and Samsung. This side-channel attack exploits how Smart TVs make different sounds when selecting a key, moving the cursor, and deleting a character. These properties allow an attacker to extract the number of cursor movements between selections from the TV's audio. Our attack uses this extracted information to identify the likeliest typed strings. Against realistic users, the attack finds up to 33.33% of credit card details and 60.19% of common passwords within 100 guesses. This vulnerability has been acknowledged by Samsung and highlights how Smart TVs must better protect sensitive data.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 104 ) ) ) [post__not_in] => Array ( [0] => 16869 ) )

Reverse Engineering of Multiplexed CAN Frames (Long)

Alessio Buscemi, Thomas Engel (SnT, University of Luxembourg), Kang G. Shin (The University of Michigan)

Read More

Commercial Vehicle Electronic Logging Device Security: Unmasking the Risk...

Jake Jepson, Rik Chatterjee, Jeremy Daily (Colorado State University)

Read More

You Can Use But Cannot Recognize: Preserving Visual Privacy...

Qiushi Li (Tsinghua University), Yan Zhang (Tsinghua University), Ju Ren (Tsinghua University), Qi Li (Tsinghua University), Yaoxue Zhang (Tsinghua University)

Read More

Leaking the Privacy of Groups and More: Understanding Privacy...

Jiangrong Wu (Sun Yat-sen University), Yuhong Nan (Sun Yat-sen University), Luyi Xing (Indiana University Bloomington), Jiatao Cheng (Sun Yat-sen University), Zimin Lin (Alibaba Group), Zibin Zheng (Sun Yat-sen University), Min Yang (Fudan University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)