Gianluca Scopelliti (Ericsson & KU Leuven), Christoph Baumann (Ericsson), Fritz Alder (KU Leuven), Eddy Truyen (KU Leuven), Jan Tobias Mühlberg (Université libre de Bruxelles & KU Leuven)

In Intelligent Transport Systems, secure communication between vehicles, infrastructure, and other road users is critical to maintain road safety. This includes the revocation of cryptographic credentials of misbehaving or malicious vehicles in a timely manner. However, current standards are vague about how revocation should be handled, and recent surveys suggest severe limitations in the scalability and effectiveness of existing revocation schemes. In this paper, we present a formally verified mechanism for self-revocation of Vehicle-to-Everything (V2X) pseudonymous credentials, which relies on a trusted processing element in vehicles but does not require a trusted time source. Our scheme is compatible with ongoing standardization efforts and, leveraging the Tamarin prover, is the first to guarantee the actual revocation of credentials with a predictable upper bound on revocation time and in the presence of realistic attackers. We test our revocation mechanism in a virtual 5G-Edge deployment scenario where a large number of vehicles communicate with each other, simulating real-world conditions such as network malfunctions and delays. Results show that our scheme upholds formal guarantees in practice, while exhibiting low network overhead and good scalability.

View More Papers

BGP-iSec: Improved Security of Internet Routing Against Post-ROV Attacks

Cameron Morris (University of Connecticut), Amir Herzberg (University of Connecticut), Bing Wang (University of Connecticut), Samuel Secondo (University of Connecticut)

Read More

Maginot Line: Assessing a New Cross-app Threat to PII-as-Factor...

Fannv He (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China), Yan Jia (DISSec, College of Cyber Science, Nankai University, China), Jiayu Zhao (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China), Yue Fang (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China),…

Read More

DeepGo: Predictive Directed Greybox Fuzzing

Peihong Lin (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Wei Xie (National University of Defense Technology), Gen Zhang (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Read More