Qiushi Wu (University of Minnesota), Zhongshu Gu (IBM Research), Hani Jamjoom (IBM Research), Kangjie Lu (University of Minnesota)

Generating accurate call graphs for large programs, particularly at the operating system (OS) level, poses a well-known challenge. This difficulty stems from the widespread use of indirect calls within large programs, wherein the computation of call targets is deferred until runtime to achieve program polymorphism. Consequently, compilers are unable to statically determine indirect call edges. Recent advancements have attempted to use type analysis to globally match indirect call targets in programs. However, these approaches still suffer from low precision when handling large target programs or generic types.

This paper presents GNNIC, a Graph Neural Network (GNN) based Indirect Call analyzer. GNNIC employs a technique called abstract-similarity search to accurately identify indirect call targets in large programs. The approach is based on the observation that although indirect call targets exhibit intricate polymorphic behaviors, they share common abstract characteristics, such as function descriptions, data types, and invoked function calls. We consolidate such information into a representative abstraction graph (RAG) and employ GNNs to learn function embeddings. Abstract-similarity search relies on at least one anchor target to bootstrap. Therefore, we also propose a new program analysis technique to locally identify valid targets of each indirect call.
Starting from anchor targets, GNNIC can expand the search scope to find more targets of indirect calls in the whole program.
The implementation of GNNIC utilizes LLVM and GNN, and we evaluated it on multiple OS kernels. The results demonstrate that GNNIC outperforms state-of-the-art type-based techniques by reducing 86% to 93% of false target functions. Moreover, the abstract similarity and precise call graphs generated by GNNIC can enhance security applications by discovering new bugs, alleviating path-explosion issues, and improving the efficiency of static program analysis. The combination of static analysis and GNNIC resulted in finding 97 new bugs in Linux and FreeBSD kernels.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 104 ) ) ) [post__not_in] => Array ( [0] => 16858 ) )

NODLINK: An Online System for Fine-Grained APT Attack Detection...

Shaofei Li (Key Laboratory of High-Confidence Software Technologies (MOE), School of Computer Science, Peking University), Feng Dong (Huazhong University of Science and Technology), Xusheng Xiao (Arizona State University), Haoyu Wang (Huazhong University of Science and Technology), Fei Shao (Case Western Reserve University), Jiedong Chen (Sangfor Technologies Inc.), Yao Guo (Key Laboratory of High-Confidence Software Technologies…

Read More

MOCK: Optimizing Kernel Fuzzing Mutation with Context-aware Dependency

Jiacheng Xu (Zhejiang University), Xuhong Zhang (Zhejiang University), Shouling Ji (Zhejiang University), Yuan Tian (UCLA), Binbin Zhao (Georgia Institute of Technology), Qinying Wang (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University)

Read More

IdleLeak: Exploiting Idle State Side Effects for Information Leakage

Fabian Rauscher (Graz University of Technology), Andreas Kogler (Graz University of Technology), Jonas Juffinger (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

You Can Use But Cannot Recognize: Preserving Visual Privacy...

Qiushi Li (Tsinghua University), Yan Zhang (Tsinghua University), Ju Ren (Tsinghua University), Qi Li (Tsinghua University), Yaoxue Zhang (Tsinghua University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)