Shiming Wang (Shanghai Jiao Tong University), Zhe Ji (Shanghai Jiao Tong University), Liyao Xiang (Shanghai Jiao Tong University), Hao Zhang (Shanghai Jiao Tong University), Xinbing Wang (Shanghai Jiao Tong University), Chenghu Zhou (Chinese Academy of Sciences), Bo Li (Hong Kong University of Science and Technology)

With the increased capabilities at the edge (e.g., mobile device) and more stringent privacy requirement, it becomes a recent trend for deep learning-enabled applications to pre-process sensitive raw data at the edge and transmit the features to the backend cloud for further processing. A typical application is to run machine learning (ML) services on facial images collected from different individuals. To prevent identity theft, conventional methods commonly rely on an adversarial game-based approach to shed the identity information from the feature. However, such methods can not defend against adaptive attacks, in which an attacker takes a countermove against a known defence strategy.

We propose Crafter, a feature crafting mechanism deployed at the edge, to protect the identity information from adaptive model inversion attacks while ensuring the ML tasks are properly carried out in the cloud. The key defence strategy is to mislead the attacker to a non-private prior from which the attacker gains little about the private identity. In this case, the crafted features act like poison training samples for attackers with adaptive model updates. Experimental results indicate that Crafter successfully defends both basic and possible adaptive attacks, which can not be achieved by state-of-the-art adversarial game-based methods.

View More Papers

Eavesdropping on Controller Acoustic Emanation for Keystroke Inference Attack...

Shiqing Luo (George Mason University), Anh Nguyen (George Mason University), Hafsa Farooq (Georgia State University), Kun Sun (George Mason University), Zhisheng Yan (George Mason University)

Read More

EM Eye: Characterizing Electromagnetic Side-channel Eavesdropping on Embedded Cameras

Yan Long (University of Michigan), Qinhong Jiang (Zhejiang University), Chen Yan (Zhejiang University), Tobias Alam (University of Michigan), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University), Kevin Fu (Northeastern University)

Read More

Decentralized Information-Flow Control for ROS2

Nishit V. Pandya (Indian Institute of Science Bangalore), Himanshu Kumar (Indian Institute of Science Bangalore), Gokulnath M. Pillai (Indian Institute of Science Bangalore), Vinod Ganapathy (Indian Institute of Science Bangalore)

Read More

CrowdGuard: Federated Backdoor Detection in Federated Learning

Phillip Rieger (Technical University of Darmstadt), Torsten Krauß (University of Würzburg), Markus Miettinen (Technical University of Darmstadt), Alexandra Dmitrienko (University of Würzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More