Fatemeh Arkannezhad (UCLA), Justin Feng (UCLA), Nader Sehatbakhsh (UCLA)

Remote attestation has received much attention recently due to the proliferation of embedded and IoT devices. Among various solutions, methods based on hardware-software co-design (hybrid) are particularly popular due to their low overhead yet effective approaches. Despite their usefulness, hybrid methods still suffer from multiple limitations such as strict protections required for the attestation keys and restrictive operation and threat models such as disabling interrupts and neglecting time-of-check-time-of-use (TOCTOU) attacks.

In this paper, we propose a new hybrid attestation method called IDA, which removes the requirement for disabling interrupts and restrictive access control for the secret key and attestation code, thus improving the system's overall security and flexibility. Rather than making use of a secret key to calculate the response, IDA verifies the attestation process with trusted hardware monitoring and certifies its authenticity only if it was followed precisely. Further, to prevent TOCTOU attacks and handle interrupts, we propose IDA+, which monitors program memory between attestation requests or during interrupts and informs the verifier of changes to the program memory. We implement and evaluate IDA and IDA+ on open-source MSP430 architecture, showing a reasonable overhead in terms of runtime, memory footprint, and hardware overhead while being robust against various attack scenarios. Comparing our method with the state-of-the-art, we show that it has minimal overhead while achieving important new properties such as support for interrupts and DMA requests and detecting TOCTOU attacks.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 104 ) ) ) [post__not_in] => Array ( [0] => 16826 ) )

Strengthening Privacy in Robust Federated Learning through Secure Aggregation

Tianyue Chu, Devriş İşler (IMDEA Networks Institute & Universidad Carlos III de Madrid), Nikolaos Laoutaris (IMDEA Networks Institute)

Read More

WIP: Body Posture Analysis as an Objective Measurement for...

Cherin Lim, Tianhao Xu, Prashanth Rajivan (University of Washington)

Read More

WIP: Adversarial Object-Evasion Attack Detection in Autonomous Driving Contexts:...

Rao Li (The Pennsylvania State University), Shih-Chieh Dai (Pennsylvania State University), Aiping Xiong (Penn State University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)