Fatemeh Arkannezhad (UCLA), Justin Feng (UCLA), Nader Sehatbakhsh (UCLA)

Remote attestation has received much attention recently due to the proliferation of embedded and IoT devices. Among various solutions, methods based on hardware-software co-design (hybrid) are particularly popular due to their low overhead yet effective approaches. Despite their usefulness, hybrid methods still suffer from multiple limitations such as strict protections required for the attestation keys and restrictive operation and threat models such as disabling interrupts and neglecting time-of-check-time-of-use (TOCTOU) attacks.

In this paper, we propose a new hybrid attestation method called IDA, which removes the requirement for disabling interrupts and restrictive access control for the secret key and attestation code, thus improving the system's overall security and flexibility. Rather than making use of a secret key to calculate the response, IDA verifies the attestation process with trusted hardware monitoring and certifies its authenticity only if it was followed precisely. Further, to prevent TOCTOU attacks and handle interrupts, we propose IDA+, which monitors program memory between attestation requests or during interrupts and informs the verifier of changes to the program memory. We implement and evaluate IDA and IDA+ on open-source MSP430 architecture, showing a reasonable overhead in terms of runtime, memory footprint, and hardware overhead while being robust against various attack scenarios. Comparing our method with the state-of-the-art, we show that it has minimal overhead while achieving important new properties such as support for interrupts and DMA requests and detecting TOCTOU attacks.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 104 ) ) ) [post__not_in] => Array ( [0] => 16826 ) )

ReqsMiner: Automated Discovery of CDN Forwarding Request Inconsistencies and...

Linkai Zheng (Tsinghua University), Xiang Li (Tsinghua University), Chuhan Wang (Tsinghua University), Run Guo (Tsinghua University), Haixin Duan (Tsinghua University; Quancheng Laboratory), Jianjun Chen (Tsinghua University; Zhongguancun Laboratory), Chao Zhang (Tsinghua University; Zhongguancun Laboratory), Kaiwen Shen (Tsinghua University)

Read More

Phoenix: Surviving Unpatched Vulnerabilities via Accurate and Efficient Filtering...

Hugo Kermabon-Bobinnec (Concordia University), Yosr Jarraya (Ericsson Security Research), Lingyu Wang (Concordia University), Suryadipta Majumdar (Concordia University), Makan Pourzandi (Ericsson Security Research)

Read More

From Hardware Fingerprint to Access Token: Enhancing the Authentication...

Yue Xiao (Wuhan University), Yi He (Tsinghua University), Xiaoli Zhang (Zhejiang University of Technology), Qian Wang (Wuhan University), Renjie Xie (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Qi Li (Tsinghua University)

Read More

Research on the Reliability and Fairness of Opinion Retrieval...

Zhuo Chen, Jiawei Liu, Haotan Liu (Wuhan University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)