Deepak Sirone Jegan (University of Wisconsin-Madison), Michael Swift (University of Wisconsin-Madison), Earlence Fernandes (University of California San Diego)

A Trigger-action platform (TAP) is a type of distributed system that allows end-users to create programs that stitch their web-based services together to achieve useful automation. For example, a program can be triggered when a new spreadsheet row is added, it can compute on that data and invoke an action, such as sending a message on Slack. Current TAP architectures require users to place complete trust in their secure operation. Experience has shown that unconditional trust in cloud services is unwarranted --- an attacker who compromises the TAP cloud service will gain access to sensitive data and devices for millions of users. In this work, we re-architect TAPs so that users have to place minimal trust in the cloud. Specifically, we design and implement TAPDance, a TAP that guarantees confidentiality and integrity of program execution in the presence of an untrustworthy TAP service. We utilize RISC-V Keystone enclaves to enable these security guarantees while minimizing the trusted software and hardware base. Performance results indicate that TAPDance outperforms a baseline TAP implementation using Node.js with 32% lower latency and 33% higher throughput on average.

View More Papers

Sharing cyber threat intelligence: Does it really help?

Beomjin Jin (Sungkyunkwan University), Eunsoo Kim (Sungkyunkwan University), Hyunwoo Lee (KENTECH), Elisa Bertino (Purdue University), Doowon Kim (University of Tennessee, Knoxville), Hyoungshick Kim (Sungkyunkwan University)

Read More

Overconfidence is a Dangerous Thing: Mitigating Membership Inference Attacks...

Zitao Chen (University of British Columbia), Karthik Pattabiraman (University of British Columbia)

Read More

MadRadar: A Black-Box Physical Layer Attack Framework on mmWave...

David Hunt (Duke University), Kristen Angell (Duke University), Zhenzhou Qi (Duke University), Tingjun Chen (Duke University), Miroslav Pajic (Duke University)

Read More

On the Vulnerability of Traffic Light Recognition Systems to...

Sri Hrushikesh Varma Bhupathiraju (University of Florida), Takami Sato (University of California, Irvine), Michael Clifford (Toyota Info Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More