Jakob Nyber, Pontus Johnson (KTH Royal Institute of Technology)

We implemented and evaluated an automated cyber defense agent. The agent takes security alerts as input and uses reinforcement learning to learn a policy for executing predefined defensive measures. The defender policies were trained in an environment intended to simulate a cyber attack. In the simulation, an attacking agent attempts to capture targets in the environment, while the defender attempts to protect them by enabling defenses. The environment was modeled using attack graphs based on the Meta Attack Language language. We assumed that defensive measures have downtime costs, meaning that the defender agent was penalized for using them. We also assumed that the environment was equipped with an imperfect intrusion detection system that occasionally produces erroneous alerts based on the environment state. To evaluate the setup, we trained the defensive agent with different volumes of intrusion detection system noise. We also trained agents with different attacker strategies and graph sizes. In experiments, the defensive agent using policies trained with reinforcement learning outperformed agents using heuristic policies. Experiments also demonstrated that the policies could generalize across different attacker strategies. However, the performance of the learned policies decreased as the attack graphs increased in size.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 66 [1] => 70 ) ) ) [post__not_in] => Array ( [0] => 13552 ) )

FUZZILLI: Fuzzing for JavaScript JIT Compiler Vulnerabilities

Samuel Groß (Google), Simon Koch (TU Braunschweig), Lukas Bernhard (Ruhr-University Bochum), Thorsten Holz (CISPA Helmholtz Center for Information Security), Martin Johns (TU Braunschweig)

Read More

Power to the Data Defenders: Human-Centered Disclosure Risk Calibration...

Kaustav Bhattacharjee, Aritra Dasgupta (New Jersey Institute of Technology)

Read More

Paralyzing Drones via EMI Signal Injection on Sensory Communication...

Joonha Jang (KAIST), ManGi Cho (KAIST), Jaehoon Kim (KAIST), Dongkwan Kim (Samsung SDS), Yongdae Kim (KAIST)

Read More

A Systematic Study of the Consistency of Two-Factor Authentication...

Sanam Ghorbani Lyastani (CISPA Helmholtz Center for Information Security, Saarland University), Michael Backes (CISPA Helmholtz Center for Information Security), Sven Bugiel (CISPA Helmholtz Center for Information Security)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)