Ron Marcovich, Orna Grumberg, Gabi Nakibly (Technion, Israel Institute of Technology)

protocol from a binary code that implements it. This process is useful in cases such as extraction of the command and control protocol of a malware, uncovering security vulnerabilities in a network protocol implementation or verifying conformance to the protocol’s standard. Protocol inference usually involves time-consuming work to manually reverse engineer the binary code.

We present a novel method to automatically infer state machine of a network protocol and its message formats directly from the binary code. To the best of our knowledge, this is the first method to achieve this solely based on a binary code of a single peer. We do not assume any of the following: access to a remote peer, access to captures of the protocol’s traffic, and prior knowledge of message formats. The method leverages extensions to symbolic execution and novel modifications to automata learning. We validate the proposed method by inferring real-world protocols including the C&C protocol of Gh0st RAT, a well-known malware

View More Papers

Enhancing Symbolic Execution by Machine Learning Based Solver Selection

Sheng-Han Wen (National Taiwan University), Wei-Loon Mow (National Taiwan University), Wei-Ning Chen (National Taiwan University), Chien-Yuan Wang (National Taiwan University), Hsu-Chun Hsiao (National Taiwan University)

Read More

A Cross-Architecture Instruction Embedding Model for Natural Language Processing-Inspired...

Kimberly Redmond (University of South Carolina), Lannan Luo (University of South Carolina), Qiang Zeng (University of South Carolina)

Read More

Efficient Normalized Reduction and Generation of Equivalent Multivariate Binary...

Arnau Gàmez-Montolio (City, University of London; Activision Research), Enric Florit (Universitat de Barcelona), Martin Brain (City, University of London), Jacob M. Howe (City, University of London)

Read More

CableAuth: A Biometric Second Factor Authentication Scheme for Electric...

Jack Sturgess, Sebastian Köhler, Simon Birnbach, Ivan Martinovic (University of Oxford)

Read More