Zhiyou Tian (Xidian University), Cong Sun (Xidian University), Dongrui Zeng (Palo Alto Networks), Gang Tan (Pennsylvania State University)

Dynamic taint analysis (DTA) has been widely used in security applications, including exploit detection, data provenance, fuzzing improvement, and information flow control. Meanwhile, the usability of DTA is argued on its high runtime overhead, causing a slowdown of more than one magnitude on large binaries. Various approaches have used preliminary static analysis and introduced parallelization or higher-granularity abstractions to raise the scalability of DTA. In this paper, we present a dynamic taint analysis framework podft that defines and enforces different fast paths to improve the efficiency of DBI-based dynamic taint analysis. podft uses a value-set analysis (VSA) to differentiate the instructions that must not be tainted from those potentially tainted. Combining the VSA-based analysis results with proper library function abstractions, we develop taint tracking policies for fast and slow paths and implement the tracking policy enforcement as a Pin-based taint tracker. The experimental results show that podft is more efficient than the state-of-the-art fast path-based DTA approach and competitive with the static binary rewriting approach. podft has a high potential to integrate basic block-level deep neural networks to simplify fast path enforcement and raise tracking efficiency.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 37 [1] => 66 ) ) ) [post__not_in] => Array ( [0] => 13493 ) )

WIP: Infrared Laser Reflection Attack Against Traffic Sign Recognition...

Takami Sato (University of California, Irvine), Sri Hrushikesh Varma Bhupathiraju (University of Florida), Michael Clifford (Toyota InfoTech Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

Paralyzing Drones via EMI Signal Injection on Sensory Communication...

Joonha Jang (KAIST), ManGi Cho (KAIST), Jaehoon Kim (KAIST), Dongkwan Kim (Samsung SDS), Yongdae Kim (KAIST)

Read More

Drone Security and the Mysterious Case of DJI's DroneID

Nico Schiller (Ruhr-Universität Bochum), Merlin Chlosta (CISPA Helmholtz Center for Information Security), Moritz Schloegel (Ruhr-Universität Bochum), Nils Bars (Ruhr University Bochum), Thorsten Eisenhofer (Ruhr University Bochum), Tobias Scharnowski (Ruhr-University Bochum), Felix Domke (Independent), Lea Schönherr (CISPA Helmholtz Center for Information Security), Thorsten Holz (CISPA Helmholtz Center for Information Security)

Read More

Faster Secure Comparisons with Offline Phase for Efficient Private...

Florian Kerschbaum (University of Waterloo), Erik-Oliver Blass (Airbus), Rasoul Akhavan Mahdavi (University of Waterloo)

Read More