Derrick McKee (Purdue University), Nathan Burow (MIT Lincoln Laboratory), Mathias Payer (EPFL)

Reverse engineering unknown binaries is a difficult, resource intensive process due to information loss and optimizations performed by compilers that introduce significant binary diversity. Existing binary similarity approaches do not scale or are inaccurate. In this paper, we introduce IOVec Function Identification (IOVFI), which assesses similarity based on program state transformations, which compilers largely guarantee even across compilation environments and architectures. IOVFI executes functions with initial predetermined program states, measures the resulting program state changes, and uses the sets of input and output state vectors as unique semantic fingerprints. Since IOVFI relies on state vectors, and not code measurements, it withstands broad changes in compilers and optimizations used to generate a binary.

Evaluating our IOVFI implementation as a semantic function identifier for coreutils-8.32, we achieve a high .773 average F-Score, indicating high precision and recall. When identifying functions generated from differing compilation environments, IOVFI achieves a 100% accuracy improvement over BinDiff 6, outperforms asm2vec in cross-compilation environment accuracy, and, when compared to dynamic frameworks, BLEX and IMF-SIM, IOVFI is 25%–53% more accurate.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 37 [1] => 66 ) ) ) [post__not_in] => Array ( [0] => 13492 ) )

Similarity Metric Method for Binary Basic Blocks of Cross-Instruction...

Xiaochuan Zhang (Artificial Intelligence Research Center, National Innovation Institute of Defense Technology), Wenjie Sun (State Key Laboratory of Mathematical Engineering and Advanced Computing), Jianmin Pang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Fudong Liu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Zhen Ma (State Key Laboratory of Mathematical Engineering and Advanced…

Read More

Analyzing the Patterns and Behavior of Users When Detecting...

Nick Ceccio, Naman Gupta, Majed Almansoori, Rahul Chatterjee (University of Wisconsin-Madison)

Read More

Thwarting Smartphone SMS Attacks at the Radio Interface Layer

Haohuang Wen (Ohio State University), Phillip Porras (SRI International), Vinod Yegneswaran (SRI International), Zhiqiang Lin (Ohio State University)

Read More

Cloud-Hosted Security Operations Center (SOC)

Drew Walsh, Kevin Conklin (Deloitte)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)