H M Sabbir Ahmad (Boston University), Ehsan Sabouni (Boston University), Wei Xiao (Massachusetts Institute of Technology), Christos G. Cassandras (Boston University), Wenchao Li (Boston University)

In this paper we analyze the effect of cyberattacks on cooperative control of connected and autonomous vehicles (CAVs) at traffic bottleneck points. We focus on three types of such bottleneck points including merging roadways, intersections and roundabouts. The coordination amongst CAVs in the network is achieved in a decentralized manner whereby each CAV formulates its own optimal control problem and solves it onboard in real time. A roadside unit is introduced to act as the coordinator that communicates and exchanges relevant data with the CAVs through wireless V2X communication. We show that this CAV setup is vulnerable to various cyberattacks such as Sybil attack, jamming attack and false data injection attack. Results from our simulation experiments call attention to the extent to which such attacks may jeopardize the coordination performance and the safety of the CAVs.

View More Papers

Copy-on-Flip: Hardening ECC Memory Against Rowhammer Attacks

Andrea Di Dio (Vrije Universiteit Amsterdam), Koen Koning (Intel), Herbert Bos (Vrije Universiteit Amsterdam), Cristiano Giuffrida (Vrije Universiteit Amsterdam)

Read More

A Robust Counting Sketch for Data Plane Intrusion Detection

Sian Kim (Ewha Womans University), Changhun Jung (Ewha Womans University), RhongHo Jang (Wayne State University), David Mohaisen (University of Central Florida), DaeHun Nyang (Ewha Womans University)

Read More

Commercial Vehicle Electronic Logging Device Security: Unmasking the Risk...

Jake Jepson, Rik Chatterjee, Jeremy Daily (Colorado State University)

Read More

MyTEE: Own the Trusted Execution Environment on Embedded Devices

Seungkyun Han (Chungnam National University), Jinsoo Jang (Chungnam National University)

Read More