Zachary Depp, Halit Bugra Tulay, C. Emre Koksal (The Ohio State University)

The traditional vehicular roll-jam attack is an effective means to gain access to the target vehicle by jamming and recording key fob inputs from a victim. However, it requires specific knowledge of the attack surface, and delicate tuning of software-defined radio parameters. We have developed an enhanced version of the roll-jam attack that uses a known noise signal for jamming, in contrast to the additive white Gaussian noise that is typically used in the attack. Using a known noise signal allows for less strict tuning of the software-defined radios used in the attack, and allows for digital noise removal of the recorded input to enhance the replay attack.

View More Papers

The “Beatrix” Resurrections: Robust Backdoor Detection via Gram Matrices

Wanlun Ma (Swinburne University of Technology), Derui Wang (CSIRO’s Data61), Ruoxi Sun (The University of Adelaide & CSIRO's Data61), Minhui Xue (CSIRO's Data61), Sheng Wen (Swinburne University of Technology), Yang Xiang (Digital Research & Innovation Capability Platform, Swinburne University of Technology)

Read More

WIP: Threat Modeling Laser-Induced Acoustic Interference in Computer Vision-Assisted...

Nina Shamsi (Northeastern University), Kaeshav Chandrasekar, Yan Long, Christopher Limbach (University of Michigan), Keith Rebello (Boeing), Kevin Fu (Northeastern University)

Read More

WIP: Shadow Hack: Adversarial Shadow Attack Against LiDAR Object...

Ryunosuke Kobayashi, Kazuki Nomoto, Yuna Tanaka, Go Tsuruoka (Waseda University), Tatsuya Mori (Waseda University/NICT/RIKEN)

Read More