Zachary Depp, Halit Bugra Tulay, C. Emre Koksal (The Ohio State University)

The traditional vehicular roll-jam attack is an effective means to gain access to the target vehicle by jamming and recording key fob inputs from a victim. However, it requires specific knowledge of the attack surface, and delicate tuning of software-defined radio parameters. We have developed an enhanced version of the roll-jam attack that uses a known noise signal for jamming, in contrast to the additive white Gaussian noise that is typically used in the attack. Using a known noise signal allows for less strict tuning of the software-defined radios used in the attack, and allows for digital noise removal of the recorded input to enhance the replay attack.

View More Papers

Blaze: A Framework for Interprocedural Binary Analysis

Matthew Revelle, Matt Parker, Kevin Orr (Kudu Dynamics)

Read More

AuthentiSense: A Scalable Behavioral Biometrics Authentication Scheme using Few-Shot...

Hossein Fereidooni (Technical University of Darmstadt), Jan Koenig (University of Wuerzburg), Phillip Rieger (Technical University of Darmstadt), Marco Chilese (Technical University of Darmstadt), Bora Goekbakan (KOBIL, Germany), Moritz Finke (University of Wuerzburg), Alexandra Dmitrienko (University of Wuerzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

HistCAN: A real-time CAN IDS with enhanced historical traffic...

Shuguo Zhuo, Nuo Li, Kui Ren (The State Key Laboratory of Blockchain and Data Security, Zhejiang University)

Read More

podft: On Accelerating Dynamic Taint Analysis with Precise Path...

Zhiyou Tian (Xidian University), Cong Sun (Xidian University), Dongrui Zeng (Palo Alto Networks), Gang Tan (Pennsylvania State University)

Read More