Mahdi Akil (Karlstad University), Leonardo Martucci (Karlstad University), Jaap-Henk Hoepman (Radboud University)

In vehicular ad hoc networks (VANETs), vehicles exchange messages to improve traffic and passengers’ safety. In VANETs, (passive) adversaries can track vehicles (and their drivers) by analyzing the data exchanged in the network. The use of privacy-enhancing technologies can prevent vehicle tracking but solutions so far proposed either require an intermittent connection to a fixed infrastructure or allow vehicles to generate concurrent pseudonyms which could lead to identity-based (Sybil) attacks. In this paper, we propose an anonymous authentication scheme that does not require a connection to a fixed infrastructure during operation and is not vulnerable to Sybil attacks. Our scheme is built on attribute-based credentials and short lived pseudonyms. In it, vehicles interact with a central authority only once, for registering themselves, and then generate their own pseudonyms without interacting with other devices, or relying on a central authority or a trusted third party. The pseudonyms are periodically refreshed, following system wide epochs.

View More Papers

CHKPLUG: Checking GDPR Compliance of WordPress Plugins via Cross-language...

Faysal Hossain Shezan (University of Virginia), Zihao Su (University of Virginia), Mingqing Kang (Johns Hopkins University), Nicholas Phair (University of Virginia), Patrick William Thomas (University of Virginia), Michelangelo van Dam (in2it), Yinzhi Cao (Johns Hopkins University), Yuan Tian (UCLA)

Read More

Machine Unlearning of Features and Labels

Alexander Warnecke (TU Braunschweig), Lukas Pirch (TU Braunschweig), Christian Wressnegger (Karlsruhe Institute of Technology (KIT)), Konrad Rieck (TU Braunschweig)

Read More

Adversarial Robustness for Tabular Data through Cost and Utility...

Klim Kireev (EPFL), Bogdan Kulynych (EPFL), Carmela Troncoso (EPFL)

Read More

Access Your Tesla without Your Awareness: Compromising Keyless Entry...

Xinyi Xie (Shanghai Fudan Microelectronics Group Co., Ltd.), Kun Jiang (Shanghai Fudan Microelectronics Group Co., Ltd.), Rui Dai (Shanghai Fudan Microelectronics Group Co., Ltd.), Jun Lu (Shanghai Fudan Microelectronics Group Co., Ltd.), Lihui Wang (Shanghai Fudan Microelectronics Group Co., Ltd.), Qing Li (State Key Laboratory of ASIC & System, Fudan University), Jun Yu (State Key…

Read More