Chong Xiang (Princeton University), Chawin Sitawarin (University of California, Berkeley), Tong Wu (Princeton University), Prateek Mittal (Princeton University)

ETAS Best Short Paper Award Runner-Up!

The physical-world adversarial patch attack poses a security threat to AI perception models in autonomous vehicles. To mitigate this threat, researchers have designed defenses with certifiable robustness. In this paper, we survey existing certifiably robust defenses and highlight core robustness techniques that are applicable to a variety of perception tasks, including classification, detection, and segmentation. We emphasize the unsolved problems in this space to guide future research, and call for attention and efforts from both academia and industry to robustify perception models in autonomous vehicles.

View More Papers

Unlocking the Potential of Domain Aware Binary Analysis in...

Dr. Zhiqiang Lin (Distinguished Professor of Engineering at The Ohio State University)

Read More

OBI: a multi-path oblivious RAM for forward-and-backward-secure searchable encryption

Zhiqiang Wu (Changsha University of Science and Technology), Rui Li (Dongguan University of Technology)

Read More

RR: A Fault Model for Efficient TEE Replication

Baltasar Dinis (Instituto Superior Técnico (IST-ULisboa) / INESC-ID / MPI-SWS), Peter Druschel (MPI-SWS), Rodrigo Rodrigues (Instituto Superior Técnico (IST-ULisboa) / INESC-ID)

Read More

Trellis: Robust and Scalable Metadata-private Anonymous Broadcast

Simon Langowski (Massachusetts Institute of Technology), Sacha Servan-Schreiber (Massachusetts Institute of Technology), Srinivas Devadas (Massachusetts Institute of Technology)

Read More