Chong Xiang (Princeton University), Chawin Sitawarin (University of California, Berkeley), Tong Wu (Princeton University), Prateek Mittal (Princeton University)

ETAS Best Short Paper Award Runner-Up!

The physical-world adversarial patch attack poses a security threat to AI perception models in autonomous vehicles. To mitigate this threat, researchers have designed defenses with certifiable robustness. In this paper, we survey existing certifiably robust defenses and highlight core robustness techniques that are applicable to a variety of perception tasks, including classification, detection, and segmentation. We emphasize the unsolved problems in this space to guide future research, and call for attention and efforts from both academia and industry to robustify perception models in autonomous vehicles.

View More Papers

Analysing Adversarial Threats to Rule-Based Local-Planning Algorithms for Autonomous...

Andrew Roberts (Tallinn University of Technology), Mohsen Malayjerdi (Tallinn University of Technology), Mauro Bellone (Tallinn University of Technology), Olaf Maennel (The University of Adelaide), Ehsan Malayjerdi (Tallinn University of Technology)

Read More

Location Spoofing Attacks on Autonomous Fleets

Jinghan Yang, Andew Estornell, Yevgeniy Vorobeychik (Washington University in St. Louis)

Read More

CAN-MIRGU: A Comprehensive CAN Bus Attack Dataset from Moving...

Sampath Rajapaksha, Harsha Kalutarage (Robert Gordon University, UK), Garikayi Madzudzo (Horiba Mira Ltd, UK), Andrei Petrovski (Robert Gordon University, UK), M.Omar Al-Kadri (University of Doha for Science and Technology)

Read More

Private Certifier Intersection

Bishakh Chandra Ghosh (Indian Institute of Technology Kharagpur), Sikhar Patranabis (IBM Research - India), Dhinakaran Vinayagamurthy (IBM Research - India), Venkatraman Ramakrishna (IBM Research - India), Krishnasuri Narayanam (IBM Research - India), Sandip Chakraborty (Indian Institute of Technology Kharagpur)

Read More