Chong Xiang (Princeton University), Chawin Sitawarin (University of California, Berkeley), Tong Wu (Princeton University), Prateek Mittal (Princeton University)

ETAS Best Short Paper Award Runner-Up!

The physical-world adversarial patch attack poses a security threat to AI perception models in autonomous vehicles. To mitigate this threat, researchers have designed defenses with certifiable robustness. In this paper, we survey existing certifiably robust defenses and highlight core robustness techniques that are applicable to a variety of perception tasks, including classification, detection, and segmentation. We emphasize the unsolved problems in this space to guide future research, and call for attention and efforts from both academia and industry to robustify perception models in autonomous vehicles.

View More Papers

Machine Unlearning of Features and Labels

Alexander Warnecke (TU Braunschweig), Lukas Pirch (TU Braunschweig), Christian Wressnegger (Karlsruhe Institute of Technology (KIT)), Konrad Rieck (TU Braunschweig)

Read More

Accurate Compiler and Optimization Independent Function Identification Using Program...

Derrick McKee (Purdue University), Nathan Burow (MIT Lincoln Laboratory), Mathias Payer (EPFL)

Read More

On the Vulnerability of Traffic Light Recognition Systems to...

Sri Hrushikesh Varma Bhupathiraju (University of Florida), Takami Sato (University of California, Irvine), Michael Clifford (Toyota Info Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

Evaluations of Cyberattacks on Cooperative Control of Connected and...

H M Sabbir Ahmad (Boston University), Ehsan Sabouni (Boston University), Wei Xiao (Massachusetts Institute of Technology), Christos G. Cassandras (Boston University), Wenchao Li (Boston University)

Read More