Meisam Mohammady (Iowa State University), Reza Arablouei (Data61, CSIRO)

We estimate vehicular traffic states from multi-modal data collected by single-loop detectors while preserving the privacy of the individual vehicles contributing to the data. To this end, we propose a novel hybrid differential privacy (DP) approach that utilizes minimal randomization to preserve privacy by taking advantage of the relevant traffic state dynamics and the concept of DP sensitivity. Through theoretical analysis and experiments with real-world data, we show that the proposed approach significantly outperforms the related baseline non-private and private approaches in terms of accuracy and privacy preservation.

View More Papers

Folk Models of Misinformation on Social Media

Filipo Sharevski (DePaul University), Amy Devine (DePaul University), Emma Pieroni (DePaul University), Peter Jachim (DePaul University)

Read More

WIP: Adversarial Retroreflective Patches: A Novel Stealthy Attack on...

Go Tsuruoka (Waseda University), Takami Sato, Qi Alfred Chen (University of California, Irvine), Kazuki Nomoto, Ryunosuke Kobayashi, Yuna Tanaka (Waseda University), Tatsuya Mori (Waseda University/NICT/RIKEN)

Read More

Sometimes, You Aren’t What You Do: Mimicry Attacks against...

Akul Goyal (University of Illinois at Urbana-Champaign), Xueyuan Han (Wake Forest University), Gang Wang (University of Illinois at Urbana-Champaign), Adam Bates (University of Illinois at Urbana-Champaign)

Read More

He-HTLC: Revisiting Incentives in HTLC

Sarisht Wadhwa (Duke University), Jannis Stoeter (Duke University), Fan Zhang (Duke University, Yale University), Kartik Nayak (Duke University)

Read More