Katherine S. Zhang (Purdue University), Claire Chen (Pennsylvania State University), Aiping Xiong (Pennsylvania State University)

Artificial intelligence (AI) systems in autonomous driving are vulnerable to a number of attacks, particularly the physical-world attacks that tamper with physical objects in the driving environment to cause AI errors. When AI systems fail or are about to fail, human drivers are required to take over vehicle control. To understand such human and AI collaboration, in this work, we examine 1) whether human drivers can detect these attacks, 2) how they project the consequent autonomous driving, 3) and what information they expect for safely taking over the vehicle control. We conducted an online survey on Prolific. Participants (N = 100) viewed benign and adversarial images of two physical-world attacks. We also presented videos of simulated driving for both attacks. Our results show that participants did not seem to be aware of the attacks. They overestimated the AI’s ability to detect the object in the dirty-road attack than in the stop-sign attack. Such overestimation was also evident when participants predicted AI’s ability in autonomous driving. We also found that participants expected different information (e.g., warnings and AI explanations) for safely taking over the control of autonomous driving.

View More Papers

Your Router is My Prober: Measuring IPv6 Networks via...

Long Pan (Tsinghua University), Jiahai Yang (Tsinghua University), Lin He (Tsinghua University), Zhiliang Wang (Tsinghua University), Leyao Nie (Tsinghua University), Guanglei Song (Tsinghua University), Yaozhong Liu (Tsinghua University)

Read More

QUICforge: Client-side Request Forgery in QUIC

Yuri Gbur (Technische Universität Berlin), Florian Tschorsch (Technische Universität Berlin)

Read More

Extrapolating Formal Analysis to Uncover Attacks in Bluetooth Passkey...

Mohit Kumar Jangid (The Ohio State University), Yue Zhang (Computer Science & Engineering, Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More

OptRand: Optimistically Responsive Reconfigurable Distributed Randomness

Adithya Bhat (Purdue University), Nibesh Shrestha (Rochester Institute of Technology), Aniket Kate (Purdue University), Kartik Nayak (Duke University)

Read More