Jack Sturgess, Sebastian Köhler, Simon Birnbach, Ivan Martinovic (University of Oxford)

Electric vehicle charging sessions can be authorised in different ways, ranging from smartphone applications to smart cards with unique identifiers that link the electric vehicle to the charging station. However, these methods do not provide strong authentication guarantees. In this paper, we propose a novel second factor authentication scheme to tackle this problem. We show that by using inertial sensor data collected from IMU sensors either embedded in the handle of the charging cable or on a separate smartwatch, users can be authenticated implicitly by behavioural biometrics as they unhook the cable from the charging station and plug it into their car at the start of a charging session. To validate the system, we conducted a user study (n=20) to collect data and we developed a suite of authentication models for which we achieve EERs of 0.06.

View More Papers

ReScan: A Middleware Framework for Realistic and Robust Black-box...

Kostas Drakonakis (FORTH), Sotiris Ioannidis (Technical University of Crete), Jason Polakis (University of Illinois at Chicago)

Read More

CAN-MIRGU: A Comprehensive CAN Bus Attack Dataset from Moving...

Sampath Rajapaksha, Harsha Kalutarage (Robert Gordon University, UK), Garikayi Madzudzo (Horiba Mira Ltd, UK), Andrei Petrovski (Robert Gordon University, UK), M.Omar Al-Kadri (University of Doha for Science and Technology)

Read More

QUICforge: Client-side Request Forgery in QUIC

Yuri Gbur (Technische Universität Berlin), Florian Tschorsch (Technische Universität Berlin)

Read More

I Still Know What You Watched Last Sunday: Privacy...

Carlotta Tagliaro (TU Wien), Florian Hahn (University of Twente), Riccardo Sepe (Guess Europe Sagl), Alessio Aceti (Sababa Security SpA), Martina Lindorfer (TU Wien)

Read More