Md Hasan Shahriar, Wenjing Lou, Y. Thomas Hou (Virginia Polytechnic Institute and State University)

ZOOX Best Paper Award Runner-Up!

A controller area network (CAN) connects dozens of electronic control units (ECUs), ensuring reliable and efficient data transmission. Because of the lack of security features of CAN protocol, in-vehicle networks are susceptible to a wide spectrum of threats, from simple injections at high frequencies to sophisticated masquerade attacks that target individual sensor values (signals). Hence, advanced analysis of the multidimensional time-series data is needed to learn the complex patterns of individual signals and their mutual dependencies. Although deep learning (DL)-based intrusion detection systems (IDS) have shown potential in such domain, they tend to suffer from poor generalization as they need optimization at every component. To detect such advanced CAN attacks, we propose CANtropy, a manual feature engineering-based lightweight CAN IDS. For each signal, CANtropy explores a comprehensive set of features from both temporal and statistical domains and selects only the effective subset of features in the detection pipeline to ensure scalability. Later, CANtropy uses a lightweight unsupervised anomaly detection model based on principal component analysis, to learn the mutual dependencies of the features and detect abnormal patterns in the sequence of CAN messages. The evaluation results on the advanced SynCAN dataset show that CANtropy provides a comprehensive defense against diverse types of cyberattacks with an average AUROC score of 0.992, and outperforms the existing DL-based baselines.

View More Papers

REDsec: Running Encrypted Discretized Neural Networks in Seconds

Lars Wolfgang Folkerts (University of Delaware), Charles Gouert (University of Delaware), Nektarios Georgios Tsoutsos (University of Delaware)

Read More

Anomaly Detection in the Open World: Normality Shift Detection,...

Dongqi Han (Tsinghua University), Zhiliang Wang (Tsinghua University), Wenqi Chen (Tsinghua University), Kai Wang (Tsinghua University), Rui Yu (Tsinghua University), Su Wang (Tsinghua University), Han Zhang (Tsinghua University), Zhihua Wang (State Grid Shanghai Municipal Electric Power Company), Minghui Jin (State Grid Shanghai Municipal Electric Power Company), Jiahai Yang (Tsinghua University), Xingang Shi (Tsinghua University), Xia…

Read More

Your Router is My Prober: Measuring IPv6 Networks via...

Long Pan (Tsinghua University), Jiahai Yang (Tsinghua University), Lin He (Tsinghua University), Zhiliang Wang (Tsinghua University), Leyao Nie (Tsinghua University), Guanglei Song (Tsinghua University), Yaozhong Liu (Tsinghua University)

Read More

Improving In-vehicle Networks Intrusion Detection Using On-Device Transfer Learning

Sampath Rajapaksha (Robert Gordon University), Harsha Kalutarage (Robert Gordon University), M.Omar Al-Kadri (Birmingham City University), Andrei Petrovski (Robert Gordon University), Garikayi Madzudzo (Horiba Mira Ltd)

Read More