Md Hasan Shahriar, Wenjing Lou, Y. Thomas Hou (Virginia Polytechnic Institute and State University)

A controller area network (CAN) connects dozens of electronic control units (ECUs), ensuring reliable and efficient data transmission. Because of the lack of security features of CAN protocol, in-vehicle networks are susceptible to a wide spectrum of threats, from simple injections at high frequencies to sophisticated masquerade attacks that target individual sensor values (signals). Hence, advanced analysis of the multidimensional time-series data is needed to learn the complex patterns of individual signals and their mutual dependencies. Although deep learning (DL)-based intrusion detection systems (IDS) have shown potential in such domain, they tend to suffer from poor generalization as they need optimization at every component. To detect such advanced CAN attacks, we propose CANtropy, a manual feature engineering-based lightweight CAN IDS. For each signal, CANtropy explores a comprehensive set of features from both temporal and statistical domains and selects only the effective subset of features in the detection pipeline to ensure scalability. Later, CANtropy uses a lightweight unsupervised anomaly detection model based on principal component analysis, to learn the mutual dependencies of the features and detect abnormal patterns in the sequence of CAN messages. The evaluation results on the advanced SynCAN dataset show that CANtropy provides a comprehensive defense against diverse types of cyberattacks with an average AUROC score of 0.992, and outperforms the existing DL-based baselines.

View More Papers

Adversarial Robustness for Tabular Data through Cost and Utility...

Klim Kireev (EPFL), Bogdan Kulynych (EPFL), Carmela Troncoso (EPFL)

Read More

Fusion: Efficient and Secure Inference Resilient to Malicious Servers

Caiqin Dong (Jinan University), Jian Weng (Jinan University), Jia-Nan Liu (Jinan University), Yue Zhang (Jinan University), Yao Tong (Guangzhou Fongwell Data Limited Company), Anjia Yang (Jinan University), Yudan Cheng (Jinan University), Shun Hu (Jinan University)

Read More

VASP: V2X Application Spoofing Platform

Mohammad Raashid Ansari, Jonathan Petit, Jean-Philippe Monteuuis, Cong Chen (Qualcomm Technologies, Inc.)

Read More

Trellis: Robust and Scalable Metadata-private Anonymous Broadcast

Simon Langowski (Massachusetts Institute of Technology), Sacha Servan-Schreiber (Massachusetts Institute of Technology), Srinivas Devadas (Massachusetts Institute of Technology)

Read More