Tian Dong (Shanghai Jiao Tong University), Shaofeng Li (Shanghai Jiao Tong University), Guoxing Chen (Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61), Haojin Zhu (Shanghai Jiao Tong University), Zhen Liu (Shanghai Jiao Tong University)

Identity plays an important role in responsible artificial intelligence (AI): it acts as a unique marker for deep learning (DL) models and can be used to trace those accountable for irresponsible use of models. Consequently, effective DL identity audit is fundamental for building responsible AI. Besides models, training datasets determine what features a model can learn, and thus should be paid equal attention in identity audit. In this work, we propose the first practical scheme, named RAI2, for responsible identity audit for both datasets and models. We develop our dataset and model similarity estimation methods that can work with black-box access to suspect models. The proposed methods can quantitatively determine the identity of datasets and models by estimating the similarity between the owner's and suspect's. Finally, we realize our responsible audit scheme based on the commitment scheme, enabling the owner to register datasets and models to a trusted third party (TTP) which is in charge of dataset and model regulation and forensics of copyright infringement. Extensive evaluation on 14 model architectures and 6 visual and textual datasets shows that our scheme can accurately identify the dataset and model with the proposed similarity estimation methods. We hope that our audit methodology will not only fill the gap in achieving identity arbitration but also ride on the wave of AI governance in this chaotic world.

View More Papers

OBSan: An Out-Of-Bound Sanitizer to Harden DNN Executables

Yanzuo Chen (The Hong Kong University of Science and Technology), Yuanyuan Yuan (The Hong Kong University of Science and Technology), Shuai Wang (The Hong Kong University of Science and Technology)

Read More

Position Paper: Space System Threat Models Must Account for...

Benjamin Cyr and Yan Long (University of Michigan), Takeshi Sugawara (The University of Electro-Communications), Kevin Fu (Northeastern University)

Read More

Backdoor Attacks Against Dataset Distillation

Yugeng Liu (CISPA Helmholtz Center for Information Security), Zheng Li (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security), Yun Shen (Netapp), Yang Zhang (CISPA Helmholtz Center for Information Security)

Read More

Machine Unlearning of Features and Labels

Alexander Warnecke (TU Braunschweig), Lukas Pirch (TU Braunschweig), Christian Wressnegger (Karlsruhe Institute of Technology (KIT)), Konrad Rieck (TU Braunschweig)

Read More