Dongqi Han (Tsinghua University), Zhiliang Wang (Tsinghua University), Wenqi Chen (Tsinghua University), Kai Wang (Tsinghua University), Rui Yu (Tsinghua University), Su Wang (Tsinghua University), Han Zhang (Tsinghua University), Zhihua Wang (State Grid Shanghai Municipal Electric Power Company), Minghui Jin (State Grid Shanghai Municipal Electric Power Company), Jiahai Yang (Tsinghua University), Xingang Shi (Tsinghua University), Xia Yin (Tsinghua University)

Concept drift is one of the most frustrating challenges for learning-based security applications built on the close-world assumption of identical distribution between training and deployment. Anomaly detection, one of the most important tasks in security domains, is instead immune to the drift of abnormal behavior due to the training without any abnormal data (known as zero-positive), which however comes at the cost of more severe impacts when normality shifts. However, existing studies mainly focus on concept drift of abnormal behaviour and/or supervised learning, leaving the normality shift for zero-positive anomaly detection largely unexplored.

In this work, we are the first to explore the normality shift for deep learning-based anomaly detection in security applications, and propose OWAD, a general framework to detect, explain and adapt to normality shift in practice. In particular, OWAD outperforms prior work by detecting shift in an unsupervised fashion, reducing the overhead of manual labeling, and providing better adaptation performance through distribution-level tackling. We demonstrate the effectiveness of OWAD through several realistic experiments on three security-related anomaly detection applications with long-term practical data. Results show that OWAD can provide better adaptation performance of normality shift with less labeling overhead. We provide case studies to analyze the normality shift and provide operational recommendations for security applications. We also conduct an initial real-world deployment on a SCADA security system.

View More Papers

VulHawk: Cross-architecture Vulnerability Detection with Entropy-based Binary Code Search

Zhenhao Luo (College of Computer, National University of Defense Technology), Pengfei Wang (College of Computer, National University of Defense Technology), Baosheng Wang (College of Computer, National University of Defense Technology), Yong Tang (College of Computer, National University of Defense Technology), Wei Xie (College of Computer, National University of Defense Technology), Xu Zhou (College of Computer,…

Read More

WIP: Towards the Practicality of the Adversarial Attack on...

Chen Ma (Xi'an Jiaotong University), Ningfei Wang (University of California, Irvine), Qi Alfred Chen (University of California, Irvine), Chao Shen (Xi'an Jiaotong University)

Read More

OBSan: An Out-Of-Bound Sanitizer to Harden DNN Executables

Yanzuo Chen (The Hong Kong University of Science and Technology), Yuanyuan Yuan (The Hong Kong University of Science and Technology), Shuai Wang (The Hong Kong University of Science and Technology)

Read More

Firefly: Spoofing Earth Observation Satellite Data through Radio Overshadowing

Edd Salkield, Sebastian Köhler, Simon Birnbach, Richard Baker (University of Oxford). Martin Strohmeier (armasuisse S+T), Ivan Martinovic (University of Oxford) Presenter: Edd Salkield

Read More