Harry W. H. Wong (The Chinese University of Hong Kong), Jack P. K. Ma (The Chinese University of Hong Kong), Hoover H. F. Yin (The Chinese University of Hong Kong), Sherman S. M. Chow (The Chinese University of Hong Kong)

Threshold ECDSA recently regained popularity due to decentralized applications such as DNSSEC and cryptocurrency asset custody. Latest (communication-optimizing) schemes often assume all n or at least n' >= t participating users remain honest throughout the pre-signing phase, essentially degenerating to n'-out-of-n' multiparty signing instead of t-out-of-n threshold signing. When anyone misbehaves, all signers must restart from scratch, rendering prior computation and communication in vain. This hampers the adoption of threshold ECDSA in time-critical situations and confines its use to a small signing committee.

To mitigate such denial-of-service vulnerabilities prevalent in state-of-the-art, we propose a robust threshold ECDSA scheme that achieves the t-out-of-n threshold flexibility "for real" throughout the whole pre-signing and signing phases without assuming an honest majority. Our scheme is desirable when computational resources are scarce and in a decentralized setting where faults are easier to be induced. Our design features 4-round pre-signing, O(n) cheating identification, and self-healing machinery over distributive shares. Prior arts mandate abort after an O(n^2)-cost identification, albeit with 3-round pre-signing (Canetti et al., CCS '20), or O(n) using 6 rounds (Castagnos et al., TCS '23). Empirically, our scheme saves up to ~30% of the communication cost, depending on at which stage the fault occurred.

View More Papers

The “Beatrix” Resurrections: Robust Backdoor Detection via Gram Matrices

Wanlun Ma (Swinburne University of Technology), Derui Wang (CSIRO’s Data61), Ruoxi Sun (The University of Adelaide & CSIRO's Data61), Minhui Xue (CSIRO's Data61), Sheng Wen (Swinburne University of Technology), Yang Xiang (Digital Research & Innovation Capability Platform, Swinburne University of Technology)

Read More

BEAGLE: Forensics of Deep Learning Backdoor Attack for Better...

Siyuan Cheng (Purdue University), Guanhong Tao (Purdue University), Yingqi Liu (Purdue University), Shengwei An (Purdue University), Xiangzhe Xu (Purdue University), Shiwei Feng (Purdue University), Guangyu Shen (Purdue University), Kaiyuan Zhang (Purdue University), Qiuling Xu (Purdue University), Shiqing Ma (Rutgers University), Xiangyu Zhang (Purdue University)

Read More

LOKI: State-Aware Fuzzing Framework for the Implementation of Blockchain...

Fuchen Ma (Tsinghua University), Yuanliang Chen (Tsinghua University), Meng Ren (Tsinghua University), Yuanhang Zhou (Tsinghua University), Yu Jiang (Tsinghua University), Ting Chen (University of Electronic Science and Technology of China), Huizhong Li (WeBank), Jiaguang Sun (School of Software, Tsinghua University)

Read More

HeteroScore: Evaluating and Mitigating Cloud Security Threats Brought by...

Chongzhou Fang (University of California, Davis), Najmeh Nazari (University of California, Davis), Behnam Omidi (George Mason University), Han Wang (Temple University), Aditya Puri (Foothill High School, Pleasanton, CA), Manish Arora (LearnDesk, Inc.), Setareh Rafatirad (University of California, Davis), Houman Homayoun (University of California, Davis), Khaled N. Khasawneh (George Mason University)

Read More