Tianyang Chen (Huazhong University of Science and Technology), Peng Xu (Huazhong University of Science and Technology), Stjepan Picek (Radboud University), Bo Luo (The University of Kansas), Willy Susilo (University of Wollongong), Hai Jin (Huazhong University of Science and Technology), Kaitai Liang (TU Delft)

Dynamic searchable symmetric encryption (DSSE) enables users to delegate the keyword search over dynamically updated encrypted databases to an honest-but-curious server without losing keyword privacy. This paper studies a new and practical security risk to DSSE, namely, secret key compromise (e.g., a user's secret key is leaked or stolen), which threatens all the security guarantees offered by existing DSSE schemes. To address this open problem, we introduce the notion of searchable encryption with key-update (SEKU) that provides users with the option of non-interactive key updates. We further define the notion of post-compromise secure with respect to leakage functions to study whether DSSE schemes can still provide data security after the client's secret key is compromised. We demonstrate that post-compromise security is achievable with a proposed protocol called ``Bamboo". Interestingly, the leakage functions of Bamboo satisfy the requirements for both forward and backward security. We conduct a performance evaluation of Bamboo using a real-world dataset and compare its runtime efficiency with the existing forward-and-backward secure DSSE schemes. The result shows that Bamboo provides strong security with better or comparable performance.

View More Papers

Brokenwire: Wireless Disruption of CCS Electric Vehicle Charging

Sebastian Köhler (University of Oxford), Richard Baker (University of Oxford), Martin Strohmeier (armasuisse Science + Technology), Ivan Martinovic (University of Oxford)

Read More

BANS: Evaluation of Bystander Awareness Notification Systems for Productivity...

Shady Mansour (LMU Munich), Pascal Knierim (Universitat Innsbruck), Joseph O’Hagan (University of Glasgow), Florian Alt (University of the Bundeswehr Munich), Florian Mathis (University of Glasgow)

Read More

Cryptographic Oracle-based Conditional Payments

Varun Madathil (North Carolina State University), Sri Aravinda Krishnan Thyagarajan (NTT Research), Dimitrios Vasilopoulos (IMDEA Software Institute), Lloyd Fournier (None), Giulio Malavolta (Max Planck Institute for Security and Privacy), Pedro Moreno-Sanchez (IMDEA Software Institute)

Read More

Bridging the Privacy Gap: Enhanced User Consent Mechanisms on...

Carl Magnus Bruhner (Linkoping University), David Hasselquist (Linkoping University, Sectra Communications), Niklas Carlsson (Linkoping University)

Read More