Joonha Jang (KAIST), ManGi Cho (KAIST), Jaehoon Kim (KAIST), Dongkwan Kim (Samsung SDS), Yongdae Kim (KAIST)

An inertial measurement unit (IMU) takes the key responsibility for the attitude control of drones. It is comprised of various sensors and transfers sensor data to the drones’ control unit. If it reports incorrect data, the drones cannot maintain their attitude and will crash down to the ground. Thus, several anti-drone studies have focused on causing significant fluctuations in the IMU sensor data by resonating the mechanical structure of the internal sensors using a crafted acoustic wave. However, this approach is limited in terms of efficacy for several reasons. As the structural details of each sensor in an IMU significantly differ by type, model, and manufacturer, the attack needs to be conducted independently for each sensor. Furthermore, it can be easily mitigated by using other supplementary sensors that are not corrupted by the attack or even with cheap plastic shielding.

In this paper, we propose a novel anti-drone technique that effectively corrupts ANY IMU sensor data regardless of the sensor’s type, model, and manufacturer. Our key idea is to distort the communication channel between the IMU and control unit of a drone by using an electromagnetic interference (EMI) signal injection. Experimentally, for a given control unit board, regardless
of the sensor used, we discovered a distinct susceptible frequency at which an EMI signal can greatly distort the sensor data. Compared to a general EM pulse (EMP) attack, it requires much less power as it targets the specific susceptible frequency. It can also avoid collateral damage from the EMP attack. For practical evaluation, we demonstrate the feasibility of the attack using real drones; the attack instantly paralyzed the drones. Lastly, we conclude by presenting practical challenges for its mitigation.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 66 ) ) ) [post__not_in] => Array ( [0] => 13230 ) )

Anomaly Detection in the Open World: Normality Shift Detection,...

Dongqi Han (Tsinghua University), Zhiliang Wang (Tsinghua University), Wenqi Chen (Tsinghua University), Kai Wang (Tsinghua University), Rui Yu (Tsinghua University), Su Wang (Tsinghua University), Han Zhang (Tsinghua University), Zhihua Wang (State Grid Shanghai Municipal Electric Power Company), Minghui Jin (State Grid Shanghai Municipal Electric Power Company), Jiahai Yang (Tsinghua University), Xingang Shi (Tsinghua University), Xia…

Read More

Browser Permission Mechanisms Demystified

Kazuki Nomoto (Waseda University), Takuya Watanabe (NTT Social Informatics Laboratories), Eitaro Shioji (NTT Social Informatics Laboratories), Mitsuaki Akiyama (NTT Social Informatics Laboratories), Tatsuya Mori (Waseda University/NICT/RIKEN AIP)

Read More

WIP: Towards the Practicality of the Adversarial Attack on...

Chen Ma (Xi'an Jiaotong University), Ningfei Wang (University of California, Irvine), Qi Alfred Chen (University of California, Irvine), Chao Shen (Xi'an Jiaotong University)

Read More

Automata-Based Automated Detection of State Machine Bugs in Protocol...

Paul Fiterau-Brostean (Uppsala University, Sweden), Bengt Jonsson (Uppsala University, Sweden), Konstantinos Sagonas (Uppsala University, Sweden and National Technical University of Athens, Greece), Fredrik Tåquist (Uppsala University, Sweden)

Read More