Joonha Jang (KAIST), ManGi Cho (KAIST), Jaehoon Kim (KAIST), Dongkwan Kim (Samsung SDS), Yongdae Kim (KAIST)

An inertial measurement unit (IMU) takes the key responsibility for the attitude control of drones. It is comprised of various sensors and transfers sensor data to the drones’ control unit. If it reports incorrect data, the drones cannot maintain their attitude and will crash down to the ground. Thus, several anti-drone studies have focused on causing significant fluctuations in the IMU sensor data by resonating the mechanical structure of the internal sensors using a crafted acoustic wave. However, this approach is limited in terms of efficacy for several reasons. As the structural details of each sensor in an IMU significantly differ by type, model, and manufacturer, the attack needs to be conducted independently for each sensor. Furthermore, it can be easily mitigated by using other supplementary sensors that are not corrupted by the attack or even with cheap plastic shielding.

In this paper, we propose a novel anti-drone technique that effectively corrupts ANY IMU sensor data regardless of the sensor’s type, model, and manufacturer. Our key idea is to distort the communication channel between the IMU and control unit of a drone by using an electromagnetic interference (EMI) signal injection. Experimentally, for a given control unit board, regardless
of the sensor used, we discovered a distinct susceptible frequency at which an EMI signal can greatly distort the sensor data. Compared to a general EM pulse (EMP) attack, it requires much less power as it targets the specific susceptible frequency. It can also avoid collateral damage from the EMP attack. For practical evaluation, we demonstrate the feasibility of the attack using real drones; the attack instantly paralyzed the drones. Lastly, we conclude by presenting practical challenges for its mitigation.

View More Papers

On the Anonymity of Peer-To-Peer Network Anonymity Schemes Used...

Piyush Kumar Sharma (imec-COSIC, KU Leuven), Devashish Gosain (Max Planck Institute for Informatics), Claudia Diaz (Nym Technologies, SA and imec-COSIC, KU Leuven)

Read More

OBI: a multi-path oblivious RAM for forward-and-backward-secure searchable encryption

Zhiqiang Wu (Changsha University of Science and Technology), Rui Li (Dongguan University of Technology)

Read More

Privacy-Preserving Database Fingerprinting

Tianxi Ji (Texas Tech University), Erman Ayday (Case Western Reserve University), Emre Yilmaz (University of Houston-Downtown), Ming Li (CSE Department The University of Texas at Arlington), Pan Li (Case Western Reserve University)

Read More

Towards Automatic and Precise Heap Layout Manipulation for General-Purpose...

Runhao Li (National University of Defense Technology), Bin Zhang (National University of Defense Technology), Jiongyi Chen (National University of Defense Technology), Wenfeng Lin (National University of Defense Technology), Chao Feng (National University of Defense Technology), Chaojing Tang (National University of Defense Technology)

Read More