Peng Huang (Zhejiang University), Yao Wei (Zhejiang University), Peng Cheng (Zhejiang University), Zhongjie Ba (Zhejiang University), Li Lu (Zhejiang University), Feng Lin (Zhejiang University), Fan Zhang (Zhejiang University), Kui Ren (Zhejiang University)

With the wide deployment of microphone-equipped smart devices, more and more users have concerns that their voices would be secretly recorded. Recent studies show that microphones have nonlinearity and can be jammed by inaudible ultrasound, which leads to the emergence of ultrasonic-based anti-eavesdropping research. However, existing solutions are implemented through energetic masking and require high energy to disturb human voice. Since ultrasonic noise can only remain inaudible at limited energy, such noise can merely cover a short distance and can be easily removed by adversaries, which makes these solutions impractical. In this paper, we explore the idea of informational masking, study the transmission and coverage constraints of ultrasonic jamming, and implement a highly effective anti-eavesdropping system, named InfoMasker. Specifically, we design a phoneme-based noise that is robust against denoising methods and can effectively prevent both humans and machines from understanding the jammed signals. We optimize the ultrasonic transmission method to achieve higher transmission energy and lower signal distortion, then implement a prototype of our system. Experimental results show that InfoMasker can effectively reduce the accuracy of all tested speech recognition systems to below 50% even at low energies (SNR=0), which is much better than existing noise designs.

View More Papers

Augmented Reality’s Potential for Identifying and Mitigating Home Privacy...

Stefany Cruz (Northwestern University), Logan Danek (Northwestern University), Shinan Liu (University of Chicago), Christopher Kraemer (Georgia Institute of Technology), Zixin Wang (Zhejiang University), Nick Feamster (University of Chicago), Danny Yuxing Huang (New York University), Yaxing Yao (University of Maryland), Josiah Hester (Georgia Institute of Technology)

Read More

Evasion Attacks and Defenses on Smart Home Physical Event...

Muslum Ozgur Ozmen (Purdue University), Ruoyu Song (Purdue University), Habiba Farrukh (Purdue University), Z. Berkay Celik (Purdue University)

Read More

podft: On Accelerating Dynamic Taint Analysis with Precise Path...

Zhiyou Tian (Xidian University), Cong Sun (Xidian University), Dongrui Zeng (Palo Alto Networks), Gang Tan (Pennsylvania State University)

Read More

Accurate Compiler and Optimization Independent Function Identification Using Program...

Derrick McKee (Purdue University), Nathan Burow (MIT Lincoln Laboratory), Mathias Payer (EPFL)

Read More