Zhenhao Luo (College of Computer, National University of Defense Technology), Pengfei Wang (College of Computer, National University of Defense Technology), Baosheng Wang (College of Computer, National University of Defense Technology), Yong Tang (College of Computer, National University of Defense Technology), Wei Xie (College of Computer, National University of Defense Technology), Xu Zhou (College of Computer, National University of Defense Technology), Danjun Liu (College of Computer, National University of Defense Technology), Kai Lu (College of Computer, National University of Defense Technology)

Code reuse is widespread in software development. It brings a heavy spread of vulnerabilities, threatening software security. Unfortunately, with the development and deployment of the Internet of Things (IoT), the harms of code reuse are magnified. Binary code search is a viable way to find these hidden vulnerabilities. Facing IoT firmware images compiled by different compilers with different optimization levels from different architectures, the existing methods are hard to fit these complex scenarios. In this paper, we propose a novel intermediate representation function model, which is an architecture-agnostic model for cross-architecture binary code search. It lifts binary code into microcode and preserves the main semantics of binary functions via complementing implicit operands and pruning redundant instructions. Then, we use natural language processing techniques and graph convolutional networks to generate function embeddings. We call the combination of a compiler, architecture, and optimization level as a file environment, and take a divide-and-conquer strategy to divide a similarity calculation problem of $C_N^2$ cross-file-environment scenarios into N-1 embedding transferring sub-problems. We propose an entropy-based adapter to transfer function embeddings from different file environments into the same file environment to alleviate the differences caused by various file environments. To precisely identify vulnerable functions, we propose a progressive search strategy to supplement function embeddings with fine-grained features to reduce false positives caused by patched functions. We implement a prototype named VulHawk and conduct experiments under seven different tasks to evaluate its performance and robustness. The experiments show VulHawk outperforms Asm2Vec, Asteria, BinDiff, GMN, PalmTree, SAFE, and Trex.

View More Papers

dewolf: Improving Decompilation by leveraging User Surveys

Steffen Enders, Eva-Maria C. Behner, Niklas Bergmann, Mariia Rybalka, Elmar Padilla (Fraunhofer FKIE, Germany), Er Xue Hui, Henry Low, Nicholas Sim (DSO National Laboratories, Singapore)

Read More

Anomaly Detection in the Open World: Normality Shift Detection,...

Dongqi Han (Tsinghua University), Zhiliang Wang (Tsinghua University), Wenqi Chen (Tsinghua University), Kai Wang (Tsinghua University), Rui Yu (Tsinghua University), Su Wang (Tsinghua University), Han Zhang (Tsinghua University), Zhihua Wang (State Grid Shanghai Municipal Electric Power Company), Minghui Jin (State Grid Shanghai Municipal Electric Power Company), Jiahai Yang (Tsinghua University), Xingang Shi (Tsinghua University), Xia…

Read More

On the Feasibility of Profiling Electric Vehicles through Charging...

Ankit Gangwal (IIIT Hyderabad), Aakash Jain (IIIT Hyderabad) and Mauro Conti (University of Padua)

Read More

Position Paper: Space System Threat Models Must Account for...

Benjamin Cyr and Yan Long (University of Michigan), Takeshi Sugawara (The University of Electro-Communications), Kevin Fu (Northeastern University)

Read More