Akul Goyal (University of Illinois at Urbana-Champaign), Xueyuan Han (Wake Forest University), Gang Wang (University of Illinois at Urbana-Champaign), Adam Bates (University of Illinois at Urbana-Champaign)

Reliable methods for host-layer intrusion detection remained an open problem within computer security. Recent research has recast intrusion detection as a provenance graph anomaly detection problem thanks to concurrent advancements in machine learning and causal graph auditing. While these approaches show promise, their robustness against an adaptive adversary has yet to be proven. In particular, it is unclear if mimicry attacks, which plagued past approaches to host intrusion detection, have a similar effect on modern graph-based methods.

In this work, we reveal that systematic design choices have allowed mimicry attacks to continue to abound in provenance graph host intrusion detection systems (Prov-HIDS). Against a corpus of exemplar Prov-HIDS, we develop evasion tactics that allow attackers to hide within benign process behaviors. Evaluating against public datasets, we demonstrate that an attacker can consistently evade detection (100% success rate) without modifying the underlying attack behaviors. We go on to show that our approach is feasible in live attack scenarios and outperforms domain-general adversarial sample techniques. Through open sourcing our code and datasets, this work will serve as a benchmark for the evaluation of future Prov-HIDS.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 66 ) ) ) [post__not_in] => Array ( [0] => 13203 ) )

Fine-Grained Trackability in Protocol Executions

Ksenia Budykho (Surrey Centre for Cyber Security, University of Surrey, UK), Ioana Boureanu (Surrey Centre for Cyber Security, University of Surrey, UK), Steve Wesemeyer (Surrey Centre for Cyber Security, University of Surrey, UK), Daniel Romero (NCC Group), Matt Lewis (NCC Group), Yogaratnam Rahulan (5G/6G Innovation Centre - 5GIC/6GIC, University of Surrey, UK), Fortunat Rajaona (Surrey…

Read More

Post-GDPR Threat Hunting on Android Phones: Dissecting OS-level Safeguards...

Mark Huasong Meng (National University of Singapore), Qing Zhang (ByteDance), Guangshuai Xia (ByteDance), Yuwei Zheng (ByteDance), Yanjun Zhang (The University of Queensland), Guangdong Bai (The University of Queensland), Zhi Liu (ByteDance), Sin G. Teo (Agency for Science, Technology and Research), Jin Song Dong (National University of Singapore)

Read More

StealthyIMU: Stealing Permission-protected Private Information From Smartphone Voice Assistant...

Ke Sun (University of California San Diego), Chunyu Xia (University of California San Diego), Songlin Xu (University of California San Diego), Xinyu Zhang (University of California San Diego)

Read More

Un-Rocking Drones: Foundations of Acoustic Injection Attacks and Recovery...

Jinseob Jeong (KAIST, Agency for Defense Development), Dongkwan Kim (Samsung SDS), Joonha Jang (KAIST), Juhwan Noh (KAIST), Changhun Song (KAIST), Yongdae Kim (KAIST)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)