Chongqing Lei (Southeast University), Zhen Ling (Southeast University), Yue Zhang (Jinan University), Kai Dong (Southeast University), Kaizheng Liu (Southeast University), Junzhou Luo (Southeast University), Xinwen Fu (University of Massachusetts Lowell)

Android accessibility service was designed to assist individuals with disabilities in using Android devices. However, it has been exploited by attackers to steal user passwords due to design shortcomings. Google has implemented various countermeasures to make it difficult for these types of attacks to be successful on modern Android devices. In this paper, we present a new type of side channel attack called content queries (CONQUER) that can bypass these defenses. We discovered that Android does not prevent the content of passwords from being queried by the accessibility service, allowing malware with this service enabled to enumerate the combinations of content to brute force the password. While this attack seems simple to execute, there are several challenges that must be addressed in order to successfully launch it against real-world apps. These include the use of lazy query to differentiate targeted password strings, active query to determine the right timing for the attack, and timing- and state-based side channels to infer case-sensitive passwords. Our evaluation results demonstrate that the CONQUER attack is effective at stealing passwords, with an average one-time success rate of 64.91%. This attack also poses a threat to all Android versions from 4.1 to 12, and can be used against tens of thousands of apps. In addition, we analyzed the root cause of the CONQUER attack and discussed several countermeasures to mitigate the potential security risks it poses.

View More Papers

WIP: Towards the Practicality of the Adversarial Attack on...

Chen Ma (Xi'an Jiaotong University), Ningfei Wang (University of California, Irvine), Qi Alfred Chen (University of California, Irvine), Chao Shen (Xi'an Jiaotong University)

Read More

Browser Permission Mechanisms Demystified

Kazuki Nomoto (Waseda University), Takuya Watanabe (NTT Social Informatics Laboratories), Eitaro Shioji (NTT Social Informatics Laboratories), Mitsuaki Akiyama (NTT Social Informatics Laboratories), Tatsuya Mori (Waseda University/NICT/RIKEN AIP)

Read More

The “Beatrix” Resurrections: Robust Backdoor Detection via Gram Matrices

Wanlun Ma (Swinburne University of Technology), Derui Wang (CSIRO’s Data61), Ruoxi Sun (The University of Adelaide & CSIRO's Data61), Minhui Xue (CSIRO's Data61), Sheng Wen (Swinburne University of Technology), Yang Xiang (Digital Research & Innovation Capability Platform, Swinburne University of Technology)

Read More

Enhanced Vehicular Roll-Jam Attack using a Known Noise Source

Zachary Depp, Halit Bugra Tulay, C. Emre Koksal (The Ohio State University)

Read More