Chongqing Lei (Southeast University), Zhen Ling (Southeast University), Yue Zhang (Jinan University), Kai Dong (Southeast University), Kaizheng Liu (Southeast University), Junzhou Luo (Southeast University), Xinwen Fu (University of Massachusetts Lowell)

Android accessibility service was designed to assist individuals with disabilities in using Android devices. However, it has been exploited by attackers to steal user passwords due to design shortcomings. Google has implemented various countermeasures to make it difficult for these types of attacks to be successful on modern Android devices. In this paper, we present a new type of side channel attack called content queries (CONQUER) that can bypass these defenses. We discovered that Android does not prevent the content of passwords from being queried by the accessibility service, allowing malware with this service enabled to enumerate the combinations of content to brute force the password. While this attack seems simple to execute, there are several challenges that must be addressed in order to successfully launch it against real-world apps. These include the use of lazy query to differentiate targeted password strings, active query to determine the right timing for the attack, and timing- and state-based side channels to infer case-sensitive passwords. Our evaluation results demonstrate that the CONQUER attack is effective at stealing passwords, with an average one-time success rate of 64.91%. This attack also poses a threat to all Android versions from 4.1 to 12, and can be used against tens of thousands of apps. In addition, we analyzed the root cause of the CONQUER attack and discussed several countermeasures to mitigate the potential security risks it poses.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 66 ) ) ) [post__not_in] => Array ( [0] => 13188 ) )

Adventures in Wonderland: Automotive Cyber beyond the CAN Bus

Michael Westra (In-Vehicle Cyber Security Technical Manager, Ford)

Read More

A Security Study about Electron Applications and a Programming...

Zihao Jin (Microsoft Research and Tsinghua University), Shuo Chen (Microsoft Research), Yang Chen (Microsoft Research), Haixin Duan (Tsinghua University and Quancheng Laboratory), Jianjun Chen (Tsinghua University and Zhongguancun Laboratory), Jianping Wu (Tsinghua University)

Read More

Let Me Unwind That For You: Exceptions to Backward-Edge...

Victor Duta (Vrije Universiteit Amsterdam), Fabian Freyer (University of California San Diego), Fabio Pagani (University of California, Santa Barbara), Marius Muench (Vrije Universiteit Amsterdam), Cristiano Giuffrida (Vrije Universiteit Amsterdam)

Read More

Backdoor Attacks Against Dataset Distillation

Yugeng Liu (CISPA Helmholtz Center for Information Security), Zheng Li (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security), Yun Shen (Netapp), Yang Zhang (CISPA Helmholtz Center for Information Security)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)