Florian Kerschbaum (University of Waterloo), Erik-Oliver Blass (Airbus), Rasoul Akhavan Mahdavi (University of Waterloo)

In a Private section intersection (PSI) protocol, Alice and Bob compute the intersection of their respective sets without disclosing any element not in the intersection. PSI protocols have been extensively studied in the literature and are deployed in industry. With state-of-the-art protocols achieving optimal asymptotic complexity, performance improvements are rare and can only improve complexity constants. In this paper, we present a new private, extremely efficient comparison protocol that leads to a PSI protocol with low constants. A useful property of our comparison protocol is that it can be divided into an online and an offline phase. All expensive cryptographic operations are performed during the offline phase, and the online phase performs only four fast field operations per comparison. This leads to an incredibly fast online phase, and our evaluation shows that it outperforms related work, including KKRT (CCS'16), VOLE-PSI (EuroCrypt'21), and OKVS (Crypto'21). We also evaluate standard approaches to implement the offline phase using different trust assumptions: cryptographic, hardware, and a third party ("dealer model").

View More Papers

Improving In-vehicle Networks Intrusion Detection Using On-Device Transfer Learning

Sampath Rajapaksha (Robert Gordon University), Harsha Kalutarage (Robert Gordon University), M.Omar Al-Kadri (Birmingham City University), Andrei Petrovski (Robert Gordon University), Garikayi Madzudzo (Horiba Mira Ltd)

Read More

Cooperative Perception for Safe Control of Autonomous Vehicles under...

Hongchao Zhang (Washington University in St. Louis), Zhouchi Li (Worcester Polytechnic Institute), Shiyu Cheng (Washington University in St. Louis), Andrew Clark (Washington University in St. Louis)

Read More

Adversarial Robustness for Tabular Data through Cost and Utility...

Klim Kireev (EPFL), Bogdan Kulynych (EPFL), Carmela Troncoso (EPFL)

Read More

CableAuth: A Biometric Second Factor Authentication Scheme for Electric...

Jack Sturgess, Sebastian Köhler, Simon Birnbach, Ivan Martinovic (University of Oxford)

Read More